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ORIGINAL RESEARCH

Evolutionary Action–Machine Learning 
Model Identifies Candidate Genes 
Associated With Early-Onset Coronary 
Artery Disease
Dillon Shapiro , BS; Kwanghyuk Lee , PhD; Jennifer Asmussen , PhD; Thomas Bourquard , PhD;  
Olivier Lichtarge , MD, PhD

BACKGROUND: Coronary artery disease is a primary cause of death around the world, with both genetic and environmental 
risk factors. Although genome-wide association studies have linked >100 unique loci to its genetic basis, these only explain a 
fraction of disease heritability.

METHODS AND RESULTS: To find additional gene drivers of coronary artery disease, we applied machine learning to quanti-
tative evolutionary information on the impact of coding variants in whole exomes from the Myocardial Infarction Genetics 
Consortium. Using ensemble-based supervised learning, the Evolutionary Action–Machine Learning framework ranked each 
gene’s ability to classify case and control samples and identified 79 significant associations. These were connected to known 
risk loci; enriched in cardiovascular processes like lipid metabolism, blood clotting, and inflammation; and enriched for car-
diovascular phenotypes in knockout mouse models. Among them, INPP5F and MST1R are examples of potentially novel 
coronary artery disease risk genes that modulate immune signaling in response to cardiac stress.

CONCLUSIONS: We concluded that machine learning on the functional impact of coding variants, based on a massive amount of 
evolutionary information, has the power to suggest novel coronary artery disease risk genes for mechanistic and therapeutic 
discoveries in cardiovascular biology, and should also apply in other complex polygenic diseases.
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Coronary artery disease (CAD) remains the global 
leading cause of death. Greater than 20 million adults 
are diagnosed with CAD, and approximately 650 000 

people in the United States die annually from some form of 
heart disease.1,2 CAD stems from a combination of genetic 
and environmental factors; therefore, understanding which 
individuals are most at risk for the development of disease 
could facilitate earlier lifestyle and pharmacological inter-
ventions. Past studies have estimated genetic heritability 
for CAD to be between 40% and 60%3,4 and identified 
>100 loci associated with CAD and its related pheno-
types, including variants primarily related to cholesterol 

metabolism, vascular remodeling, inflammation, and an-
giogenesis.5–7 Recent population scale analyses with 
hundreds of thousands of samples such as the coronary 
artery disease genome wide replication and meta-analysis 
plus the coronary artery disease genetics consortium,8,9 
UK Biobank,10,11 and the trans-omics for precision med-
icine program12 have replicated the association of sev-
eral previously reported common variants. However, 
these associations often have uncertain implications due 
to their frequent localization in noncoding regions of the 
genome. As a complement to common variant associa-
tions, whole exome sequencing studies13–15 have identified 
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rare mutations with the strongest links to heart disease 
risk and age of onset, including lipid metabolism genes 
LDLR, LDLRAP1, APOB, and PCSK9, which are causal 
for familial hypercholesterolemia and are associated with 
dramatic increases in low-density lipoprotein cholester-
ol.16–20 However, rare variant studies are typically under-
powered due to sample sizes that are magnitudes smaller 
than those used in traditional array-based approaches.21 
Consequently, fewer variants and genes from rare variant-
based approaches meet the statistical significance thresh-
old to be of interest for follow-up analyses, leaving a gap in 
the identification of novel CAD risk factors.

Although current genome-wide association stud-
ies (GWAS) findings explain approximately 40% to 50% 
of estimated heritability in CAD, with common and rare 
variants accounting for ≈20% and ≈2% to 4%, respec-
tively,22,23 one possible source of missing heritability is 
the potential for variants to have nonadditive effects on 
disease risk24 based on their functional impact. Standard 
modeling techniques rely on strict, linear assumptions 
about genetic inheritance,25–28 and approaches that con-
sider nonlinear and nonadditive interactions have shown 
improvements in some cases.29–31 Although recent stud-
ies have begun to explore the impact of variation beyond 

the level of independent single nucleotide polymorphisms 
(ie, rare variant burden, epistatic interactions between 
genes/variants, network interactions),25,26,32 association 
methods could be augmented by the fact that variants 
have different levels of impact on protein structure and 
function across evolution. Together, this argues that new 
approaches are needed to identify more direct, functional 
connections between genetic factors and CAD.

To address these issues, we developed a novel 
Evolutionary Action–Machine Learning (EAML) frame-
work that scores the relative contribution of a gene’s 
mutations in distinguishing individuals affected by a 
complex trait from healthy controls.33 By incorporating 
the Evolutionary Action (EA) functional impact score,34 
derived from a systematic analysis of evolutionary in-
formation on protein sequence variations and diver-
gences,35 into association testing and focusing on 
protein-coding variants, we include a larger portion of 
variance in our association modeling that is directly 
related to biological importance. The use of EA has 
been previously demonstrated in blinded community 
challenges to detect deleterious coding variants36 and 
in identifying genes associated with Alzheimer dis-
ease,33,37,38 cancer,32,39–41 autism spectrum disorder,42 
and antibiotic resistance.43 Additionally, the use of ma-
chine learning allows us to address nonlinear patterns 
of variation within potential risk genes. Here, we have 
used EAML to search for novel risk genes in early-
onset myocardial infarction (EOMI), an outcome of CAD 
where genetic inheritance is a major risk component. 
First, we flagged potential risk genes using EAML on 
7426 samples with EOMI and healthy samples from the 
Myocardial Infarction Genetics (MIGen Consortium).13 
We then assessed these EAML candidates against 
known CAD-related risk genes and traits and further 
characterized them through clustering with known risk 
genes in a protein–protein interaction network. Finally, 
we prioritized EAML candidates by aggregating evi-
dence related to GWAS, relative risk, mouse knock-
out data, expression quantitative trait loci (eQTLs), and 
PubMed co-occurrences. EAML recovered the most 
important known biological associations through direct 
overlap and pathway enrichments, but also prioritized 
novel candidates through multiple computational crite-
ria. These results suggest an increasingly important role 
for genes that regulate lipid metabolism, inflammation, 
blood clotting, and the cell cycle and open new direc-
tions for mechanistic and therapeutic research in CAD.

METHODS
Data Disclosure
This study protocol (H-37394) was approved by the 
Institutional Review Board for Human Subject Research 
for Baylor College of Medicine and Affiliated Hospitals. 

CLINICAL PERSPECTIVE

What Is New?
•	 A novel exome-wide association method using 

evolutionary information and machine learning 
reveals multiple genes with functional evidence 
linked to early-onset cardiovascular disease.

•	 Criteria for successful experiments support 
contributions from known and suggested coro-
nary artery disease–associated risk genes in 
important biological pathways.

What Are the Clinical Implications?
•	 The protein-coding variation characterized in this 

study further expands our knowledge of genetic 
contributions to coronary artery disease risk and 
prioritizes new avenues for mechanistic interroga-
tions, polygenic risk assessment, and therapeutics.

Nonstandard Abbreviations and Acronyms

EA	 Evolutionary Action
EAML	 Evolutionary Action–Machine Learning
EOMI	 early-onset myocardial infarction
MCC	 Matthew correlation coefficient
MIGen	 Myocardial Infarction Genetics
STARNET	 Stockholm-Tartu Atherosclerosis 

Reverse Network Engineering Task
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Our analyses were based on the following 3 data sets: 
the ATVB (Atherosclerosis, Thrombosis, and Vascular 
Biology) study, the OHS (Ottawa Heart Study), and the 
PROCARDIS (Precocious Coronary Artery Disease) 
study. These studies were approved by the institutional 
review boards of all participating institutions, and infor-
mation about informed consent from the study partici-
pants can be found in the study homepages (https://
www.ncbi.nlm.nih.gov/proje​cts/gap/cgi-bin/study.
cgi?study_id=phs00​0814.v1.p1, https://www.ncbi.nlm.
nih.gov/proje​cts/gap/cgi-bin/study.cgi?study_id=phs00​
0883.v1.p1, https://www.ncbi.nlm.nih.gov/proje​cts/gap/
cgi-bin/study.cgi?study_id=phs00​0806.v1.p1).

Because of the sensitive nature of the data collected for 
this study, requests to access the data sets from qualified 
researchers may be sent to the database of Genotypes 
and Phenotypes (dbgap-help@ncbi.nlm.nih.gov).

Software Availability
EA scores of missense variants are publicly available 
via web server (http://eacti​on.licht​argel​ab.org/). EAML 
code is publicly available on GitHub (https://github.
com/Licht​argeL​ab/EAML), including easy installation 
and a toy data set for testing.

Data Collection
Whole-exome sequencing data were obtained from 3 
previously established studies within the MIGen Exome 
Sequencing Consortium: the ATVB study (dbGaP ac-
cession: phs000814),44 the OHS (dbGaP accession: 
phs000806),45 and the PROCARDIS study (dbGaP 
accession: phs000883).46 In ATVB, both cases and 
controls were selected from across 125 coronary care 
units in Italy between 1994 and 2007. Cases were 
defined as patients hospitalized for a first myocardial 
infarction (MI) <45 years of age, and controls were 
age- and sex-matched individuals without a history of 
thromboembolic disease, a subclass of cardiovascular 
disease that shares many of the underlying risk factors 
with CAD. In OHS, cases were selected through the 
Ottawa Heart Institute and defined as patients diag-
nosed with CAD (defined as MI, coronary artery by-
pass, or angiographic stenosis >50%) <55 years of age 
in men and <65 years of age in women, whereas con-
trols were men >65 years of age and women >70 years 
of age without a history of cardiovascular disease and 
selected through newspaper and television advertis-
ing. In PROCARDIS, cases were selected from hospi-
tals in the United Kingdom and defined as patients with 
MI, unstable or stable angina, or coronary revasculari-
zation <66 years of age. Controls were age- and sex-
matched individuals without personal or sibling history 
of cardiovascular disease, recruited from the same 
centers through self-administered questionnaires. The 
cardiovascular disease history of the control samples 

is defined according to the case definition in each re-
spective study. Available clinical characteristics of each 
cohort were limited to those provided by the studies in 
dbGaP, including case–control numbers and reported 
sex distributions. The age cutoffs and sample selection 
criteria were predetermined by the individual studies, 
and detailed descriptions of sample selection criteria 
are available in each cohort’s original publication.

Variant Quality Control
To remove potentially low-quality variant sites, we fil-
tered variant sites based on the average genotype 
quality, average depth of coverage, missingness, and 
Hardy-Weinberg Equilibrium test. Variants with an aver-
age genotype quality <20, average depth of coverage 
<8, missingness >2%, or Hardy-Weinberg Equilibrium 
P value of controls <5×10−5 were removed from the 
data set. All variant filtering steps were performed 
using the BCFtools software.47

Sample Quality Control
We performed multiple steps to identify outlier samples 
before analysis. First, we inferred ancestry by using prin-
cipal component analysis to map samples with 1000 
genomes and excluded samples that were inferred as 
non-European (Figure S1). Second, we removed samples 
with an excess of coding variants (>17 000), an excess 
of missing variants (>1300), or an excess of singletons 
(>20), because these can suggest low-quality sequenc-
ing (Figure S2). We carefully considered these thresholds 
through the visualization of sample statistics. Next, we in-
ferred sex with the ratio of heterozygous to homozygous 
variants on the X chromosome and removed samples 
with a mismatch between inferred and self-reported sex 
(Figure S3). Finally, we estimated kinship coefficients be-
tween samples and removed samples with third-degree 
relatives (kinship coefficient >0.1; Figure  S4). Principal 
component analysis, sex, and relatedness filtering were 
performed using the peddy Python package.48

Variant Annotation
Variants (single nucleotide variants and indels) were 
annotated using the hg19 RefSeq reference and the 
Annotate Variation annotation tool.49 Nonsynonymous 
variants were annotated with the EA equation,34 re-
ceiving a variant impact score between 0 and 100. We 
assigned loss-of-function variants such as frameshift in-
dels and stop-gain variants a maximal EA score of 100.

Statistical Analysis
Rare Variant Association Analyses

As a control experiment and to replicate previous stud-
ies, we performed a rare variant burden test using 
the optimal sequence association test method25 in 
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the  efficient and parallelizable association container 
toolbox package (https://genome.sph.umich.edu/wiki/
EPACTS). We selected variants with a minor allele fre-
quency <1% and collapsed variants across a gene 
using EA impact score thresholds to compare optimal 
sequence association test performance more directly 
to EAML. We used 3 different variant groupings: (1) all 
nonsynonymous variants, (2) partially deleterious vari-
ants based on having an EA score >30, and (3) delete-
rious variants based on an EA score >70.

EAML Pipeline
Quantifying Functional Genetic Burden

For each gene, we first calculated an aggregate score 
of all variant level effects into 1 metric for 6 underly-
ing genotype–phenotype association hypotheses. For 
this, we developed a function dubbed the EA probabil-
ity (pEA). This is defined as:

where k is the total number of variants in a gene, j is the 
index over those variants, EAj is the EA score from a given 
variant, and zyg denotes the zygosity of variant j (0 de-
notes wild-type, 1 denotes heterozygous, and 2 denotes 
homozygous). C denotes 3 different thresholds of EA, 
specifically 0, 30, and 70. The 6 underlying hypotheses 
are delineated by terms C and zyg. First, the thresholds 
defined by C correspond to how the degree of predicted 
variant impact associates with disease status: (1) any mis-
sense variant (EA >0), (2) moderate-to-high impact vari-
ants (EA >30), or (3) deleterious variants (EA >70). Second, 
the zyg term avoids a priori assumptions about a gene’s 
inheritance pattern, allowing for an association in either an 
autosomal dominant (zyg >0) or recessive (zyg >1) man-
ner. Mutations are separated into 6 pEA learning features 
based on the assumptions made by C and zyg. Finally, 
these features are aggregated into a nx6 design matrix for 
each gene, where n is the number of samples.

Model Architecture

The learning architecture consisted of 9 different clas-
sifiers, representing standard models used in modern 
machine learning problems, combined in an averaging 
ensemble. These classifiers include Association Rules 
(PART,50 JRip 51), Function Optimizations (Multilayer 
Perceptron,52 Naïve Bayes,53 Logistic Regression,54 and 
K Nearest Neighbors55), Decision Trees (Random Forest56 
and J4857), and meta-classifiers (Adaboost58). All classi-
fiers were implemented in Weka with default hyperparam-
eters (https://www.cs.waika​to.ac.nz/ml/weka/).

Association Testing

To evaluate the association of each gene, each mem-
ber of the 9-classifier ensemble was trained on 90% 
of the input data set to classify disease cases from 
healthy controls. Performance was evaluated on the 
leftover 10%, generating a classification score for a 
given gene. This process was repeated in a 10-fold 
cross validation, with the scores averaged across 
folds, to minimize data set overfitting.

The classification performance of an individual gene 
was used as a surrogate for the magnitude of associa-
tion with the given phenotype. This was estimated using 
the Matthew correlation coefficient (MCC), defined as:

The MCC scores from all 9 classifiers were aver-
aged and used to produce a final ranking of all genes. 
We then computed Z scores and the corresponding 
1-tailed Z test P values for each average MCC relative 
to the full distribution of gene MCC scores. Finally, we 
implemented a false discovery rate correction using 
the Benjamini-Hochberg method, and genes with a 
false discovery rate–corrected P value <0.1 were se-
lected as candidate risk genes. More details of the 
EAML approach can be found in Data S2 (Figure S5).

Mouse Phenotype Analysis
To assess biological causality between EAML genes 
and cardiovascular phenotypes, we queried the Mouse 
Genome Informatics database of assayed mouse 
knockout models.59 To test whether EAML candidates 
are linked to cardiovascular phenotypes more often 
than random genes, we counted the number of candi-
dates with a mouse model reporting a cardiovascular 
system phenotype. Then, we randomly sampled gene 
sets of the same size and repeated the counting pro-
cedure to generate a random background distribution. 
We then calculated the Z score and P value of the can-
didate gene list’s enrichment in comparison with the 
random background distribution.

STRING Network Analyses
All protein–protein interaction networks were con-
structed using the STRING protein-protein interaction 
database version 11.0, downloaded from https://versi​
on-11-0b.strin​g-db.org/. Edges with a combined score 
(from all evidence types) >400 were included in net-
work analyses.

Graph information diffusion60–62 was used to as-
sess how closely related EAML genes are to target 
gene sets within a protein–protein interaction network. 
Graph information diffusion propagates signal from an 

(1)pEA = 1 −

k
∏

j=1

(

1−
EAj

100

)zyg

∀EA > C

(2)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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input gene set across the network and reported the 
signal received by every gene. The closeness of the 
input and target gene sets was then reported as a re-
ceiver operating characteristic and the area under the 
curve (AUC). Because there is a large class imbalance 
with many more genes labeled as unrelated to MI, AUC 
can be an inflated measure of performance. To control 
for this, we randomly sampled gene sets with the same 
size and degree distribution as the target gene set and 
repeated the graph information diffusion analyses. 
AUCs were measured for these random gene sets, 
then used as a background distribution for which the 
Z score of the true target gene set was measured. A 
Z score >1.96 (P<0.05) suggested that the input genes 
and target genes were functionally related.

Odds Ratio Calculation
To identify the directionality of each candidate gene’s/
variant’s contribution to relative risk, which is not re-
vealed by EAML, we calculated a crude allelic odds ratio 
for each candidate gene and each protein-coding vari-
ant within each candidate gene. Statistical significance 
was calculated using the Fisher exact test. We corrected 
for multiple testing using the Benjamini-Hochberg false 
discovery rate correction and assigned statistical signifi-
cance with an adjusted P value threshold of 0.01.

Gene-Level eQTL Mapping
Data on healthy tissue eQTLs were acquired from 
the Genotype-Tissue Expression (GTEx) Project da-
tabase.63 We considered any eQTL reported in any 
tissue with a P value <1×10−6. Cardiovascular eQTLs 
were identified using the STARNET (Stockholm-Tartu 
Atherosclerosis Reverse Network Engineering Task) 
study.64 The data from this study contain both normal-
ized RNA expression and genotyped DNA across 7 
cardiovascular tissue types. We used a set of eGenes 
reported by the initial study, which are genes contain-
ing at least 1 cis-eQTL.

RESULTS
EAML Identified 79 EOMI-Associated 
Disease Candidate Genes Using 
Evolution-Based Machine Learning
To discover novel risk genes associated with EOMI 
using evolutionary information, we aggregated whole 
exome sequencing data from 3 cohorts within the 
MIGen (Table S1). These data included 3736 individu-
als diagnosed with EOMI who also underwent coro-
nary angiography. The controls included 3690 healthy 
subjects with no history of thromboembolic or cardio-
vascular disease. After annotating the cohort variants 
with gene, transcript, and EA scores, we performed 

quality control to exclude potentially false-positive vari-
ants as well as individuals of non-European descent, 
mismatched sex, and sequencing outliers (Figure 1A; 
see Methods). We then analyzed the cohorts with 
EAML, an ensemble-based pipeline that evaluates 
each gene’s ability to classify cases from controls 
using EA scores and supervised machine learning.

For each gene and individual within the cohort, 
EAML first calculates a probability of functional impact 
by aggregating EA scores for 6 different groups of vari-
ants, each associated with their own unique underlying 
hypothesis (Figure 1B). We defined the groups by the 
EA magnitude and inheritance pattern, allowing EAML 
to selectively evaluate the importance of each gene 
based on different patterns of functional impact and 
variation. Each gene-based feature matrix was then 
used as the input for an ensemble of supervised clas-
sifiers, and the average MCC65 score across classifiers 
was calculated for each gene. Averaging was used to 
determine the consensus among model types while 
also reducing false positives and focusing on specific-
ity over sensitivity. Finally, each gene was ranked and 
prioritized based on its average MCC score. For our 
analysis of the EOMI cohort, we applied EAML in an 
unbiased fashion, using all variants scored with EA re-
gardless of allele frequency. Using EAML, we identified 
79 genes (Table S2) passing the false discovery rate–
corrected P value threshold of 0.1 and having a positive 
MCC score (Figure  1C) after 10-fold cross-validation 
on 16 912 genes with non-0 discriminatory power 
(Figure S6A and S6B). For comparison, we performed 
a rare variant association analysis, optimal sequence 
association test, on the same data and identified a sin-
gle gene meeting statistical significance (P<5×10−6), the 
widely known CAD risk gene LDLR (Figure S6C). These 
data show how EAML prioritizes potential EOMI risk 
genes using evolutionary information and ensemble 
machine learning, recovering more genes for compu-
tational and experimental validation than current state-
of-the-art association methods. The remainder of the 
study was focused on these 79 candidate genes.

EAML Candidates Are Enriched in 
Cardiovascular Disease Gene Sets and 
Related Phenotypes
To assess the ability of EAML to recover genes asso-
ciated with cardiovascular phenotypes and their bio-
markers, we first tested the 79 EOMI candidate genes 
for phenotype enrichment within the GWAS Catalog 
database using the functional mapping and annota-
tion portal.66 We found significant enrichments for 
CAD (P=5.20×10−11) and MI (P=3.48×10−6) as well as 
for multiple lipid biomarkers and related phenotypes 
(Figure 2B), which included triglyceride:high-density lipo-
protein (HDL) ratio (P=9.63×10−5), hypertriglyceridemia 
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Figure 1.  Overview of study design and Evolutionary Action-Machine Learning (EAML) results.
A, Workflow of sample selection, quality control, and EAML analysis. Samples are individuals from 3 separate Myocardial Infarction 
Genetics studies with whole exome sequencing performed by the Broad Institute. After variant and sample quality control, all single 
nucleotide variants are given an Evolutionary Action (EA) functional impact score based on the residue’s evolutionary importance 
and amino acid substitution. These scores are used to train an ensemble machine learning model that ranks each gene’s disease 
association. B, Schematic of how EAML uses variants and inheritance hypotheses to identify genes associated with early-onset 
myocardial infarction risk. C, Manhattan plot of EAML results. Red dots are genes found by EAML (adjusted P<0.1), and blue dots 
are genes found in previous myocardial infarction genome-wide association studies. DP indicates depth of coverage; GQ, genotype 
quality; HWE, Hardy-Weinberg Equilibrium; and PCA, principal component analysis.
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(P=1.05×10−4), type 2 diabetes (P=1.21×10−4), and an-
tithrombotic agent use (P=3.00×10−4). Notably, LDLR, 
APOA5, and LPL occurred repeatedly in these enrich-
ments; all of which are extremely important in lipid 
metabolism and the underlying pathology of cardio-
vascular disease. Next, we compared the 79 EOMI 
candidate genes against an aggregated set of refer-
ence genes from curated MI associations in GWAS 
Catalog67 (n=75) and clinical MI variants in the ClinVar 
clinical variant database68 (n=36) (Table S3). The EAML 
candidates significantly overlapped (n=6) with the union 
of the 2 reference gene sets (Figure 2B, P=8.55×10−6: 
WDR12, MIA3, LIPA, LDLR, APOA5, and ZC3HC1). 
Because most of the candidates did not overlap with 
the GWAS Catalog or ClinVar reference gene sets, we 
evaluated the degree to which our candidate genes 
colocalized with previously reported CAD GWAS loci. 
A total of 19 candidates (Table  S4) fell within 500 kb 
of a CAD GWAS Catalog locus (Figure 2C; P=0.0018), 
showing that our EAML prioritized genes are related to 
previously identified CAD loci. These data show how 
the 79 EOMI candidate genes replicate previously re-
ported cardiovascular disease associations and are 
enriched in known CAD biological processes.

EOMI Candidate Genes Exhibit Significant 
Network Relatedness and Connectivity to 
Cardiovascular Risk Genes and Biology
To investigate the mutual interactions of the EOMI can-
didates, we assessed connectivity of the 79 genes 
across the STRINGv11 protein–protein interaction net-
work. We found significant connectivity between 23 
EOMI candidates (P=1.36×10−3) (Figure S7A), although 
EAML does not make any a priori assumptions about 
network connectivity. These genes fall into local net-
work clusters enriched for cholesterol and lipid ho-
meostasis, olfaction, and vascular smooth muscle 
contraction. Next, to assess the relative network prox-
imity of our 79 EOMI candidate genes to the GWAS 
Catalog and ClinVar reference gene sets, we used a 
graph-based information diffusion algorithm (nDiffu-
sion)62 that measures the closeness of interactions be-
tween 2 gene sets in any input network (eg, STRING). 
The 79 EOMI candidate genes are highly and signifi-
cantly (Z scores=5.80, 4.99, 4.48) connected to the 2 
reference gene sets, as well as a third CAD-associated 
gene set11 (Figure 2D, Figure S7B, Table S3). We ob-
served the highest connectivity between EAML genes 
and ClinVar reference genes (AUC=0.81, Z=5.80). 
These data show that the 79 EAML genes are signifi-
cantly connected to known CAD biology in the context 
of a protein–protein interaction network, implicating 
potential novel associations and biology.

To further understand how the EOMI candidate 
genes are related to known cardiovascular risk genes, 

we built an interaction network between our 79 genes 
and the GWAS Catalog and ClinVar reference gene 
sets. The resulting candidate-reference gene hybrid 
network was highly enriched for protein–protein inter-
actions (P<1.0×10−16) and allowed us to visualize first 
neighbor connections between the 79 candidates and 
the reference genes (Figure  2E). We then performed 
Markov clustering on the hybrid network to identify 
densely connected regions and subsequently tested 
for pathway enrichment in the clusters containing at 
least 1 EOMI candidate gene. Of the 22 Markov clus-
ters, 16 contained at least 1 EOMI candidate. Pathway 
enrichment of the clusters with g:Profiler69 identified 
CAD-relevant biology including lipid metabolism, inflam-
mation, blood coagulation and platelet degranulation, 
purine and nicotinate/nicotinamide metabolism, and 
transcriptional regulation (Table S5). The genes related 
to lipid metabolism fall into the largest cluster, includ-
ing notable cardiovascular disease risk factors, namely 
LDLR, APOA5, LIPA, and LPL.13,17,70 Additionally, this 
cluster contains HPR and ANXA4, both of which may 
indirectly impact lipid metabolism through interactions 
with apolipoprotein L1 (apoL-I)–containing HDL and 
phospholipids, respectively. It is also noteworthy that 
MYBPHL has been shown to regulate ventricular and 
atrial conduction and is associated with dilated cardio-
myopathy.71 Other pathways of interest include a cluster 
with 2 EOMI candidates, INPP5F and MST1R, linked to 
inflammation and a cluster related to blood coagulation 
and platelet degranulation with 3 candidates, PROCR, 
SEC23IP, and TEX264. The inflammation cluster centers 
around JAK/STAT signaling, an important inflammatory 
pathway that is an established target for modulating 
cardiovascular risk.72 Additionally, PROCR has an es-
sential role in regulating anticoagulation through protein 
C levels73 and has previously been associated with CAD 
and venous thromboembolism.74,75 These data show 
that EOMI candidates encompass important biological 
processes essential to cardiovascular disease through 
links to known CAD genes.

EOMI Candidates Have Significant 
Relative Effects on Cardiovascular 
Disease Risk
To characterize the relative risk associated with each 
of the 79 candidate EOMI genes, we calculated allelic 
odds ratios (ORs), aggregating all nonsynonymous 
variants within each gene. Forty-nine of the 79 EAML 
candidates were significantly associated with disease 
status (adjusted P<0.01), of which 15 were associated 
with increased risk (OR >1), and 34 were associated 
with decreased risk (OR <1) (Figure 3A). Genes linked 
to familial hypercholesterolemia like LDLR (OR, 1.28) 
and APOA5 (OR, 1.2) showed the strongest asso-
ciations with increased risk, alongside CALML6 (OR, 
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1.25). Genes associated with increased risk also in-
cluded other known CAD risk factors, WDR12, CARF, 
DHX58, and LIPA with OR values of 1.18, 1.15, 1.14, and 
1.09, respectively. Surprisingly, most genes were as-
sociated with protection from disease, including MIA3 

(OR, 0.87) and PROCR (OR, 0.81), despite both genes 
being known for associations with increased risk of 
CAD and thromboembolisms, respectively.

Next, to map the risk of each of the 79 EOMI can-
didates more finely, we tested if specific variants within 
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each gene were associated with disease risk. We 
found 8 variants to be significantly associated with in-
creased risk and 9 variants associated with decreased 
risk (adjusted P<0.01) (Figure  3B). All associations 
were among common variants with allele frequen-
cies ranging from 0.03 to 0.50 and included variants 
within genes with previously identified noncoding as-
sociations like MIA3 (K605R, EA=14; E881G, EA=56), 
ZC3HC1 (R363H, EA=34), and DHX58 (Q425R, EA=8). 
In MIA3 and MST1R (Figure 3C), we identified additional 
variants with opposing EA scores and identical ORs, 
potentially due to linkage disequilibrium between the 
variants. In FAM177B, we identified a variant (I3S) that 
corresponded with increased risk (OR, 1.18) and has 
recently been associated with CAD in a gene-based 
meta-analysis along with the substitution Q523R in 
MST1R.76 These data illustrate that the 79 candidate 
genes are clinically important by increasing or de-
creasing the relative risk of EOMI and reveal variants of 
potentially novel mechanistic interest.

Cardiovascular cis-eQTLs Are Enhanced 
in EOMI Candidate Genes
In addition to being impacted by variation that directly 
affects protein function, a gene may affect disease risk 
through regulatory variation. Importantly, regulatory 
variation can modify the penetrance of protein cod-
ing variants.77,78 To determine if the EOMI candidates 
contain evidence for cis-eQTLs, we queried each 
candidate gene in the GTEx database63 for cis-eQTL 
associations within cardiovascular tissues. We found 
that 67 EOMI candidates show overlapping eQTLs in 
at least 1 cardiovascular tissue (Figure S8A). Among 
the candidate genes, neither APOA5 nor KCNJ13 
showed evidence of significant changes in differentially 
expressed gene levels, despite their previous strong 
associations with CAD. However, GTEx contains sam-
ples without any specific phenotypes, and these data 
may not represent how expression is regulated in the 
context of cardiovascular disease. To identify EOMI 

candidates containing regulatory associations spe-
cific to cardiovascular disease, we searched the eQTL 
summary statistics from STARNET,64 a RNAseq-based 
study of 600 patients with cardiovascular disease that 
contains 8 291 095 eQTLs mapped to 14 174 genes 
across 7 cardiovascular tissues. Fifty-three EOMI 
candidate genes intersected with reported eQTLs in 
at least 1 of the 7 tissues (Figure S8B). This included 
EOMI candidate genes that overlapped with the GWAS 
Catalog and ClinVar reference gene sets, except for 
KCNJ13. Six genes overlap with at least 1 eQTL in 
all 7 tissues, namely CCDC127, CCDC144A, DHX58, 
PIP4K2A, TEX264, and TIPIN (Table S6). It is notewor-
thy that APOA5 and LDLR are linked to eQTLs specific 
to liver tissue, which play an important role in regulat-
ing triglyceride metabolism79,80 and plasma lipid clear-
ance.81 These data show that many EOMI candidates 
are associated with differentially expressed gene levels 
in cardiovascular tissues, further supporting their im-
portance for CAD progression.

EOMI Candidates Are Enriched for 
Cardiovascular Effects in Mice
To evaluate whether alterations in EOMI candidates di-
rectly drive or modulate biological changes that impact 
cardiovascular health in animal models, we turned to the 
Mouse Genome Informatics database.59 In total, there 
are 18 122 human genes with mouse orthologs present 
in the Mouse Genome Informatics database, and 2845 
of these exhibit a cardiovascular system phenotype in 
at least 1 mouse model. Of the 79 EOMI genes tested, 
66 were altered in at least 1 mouse model within the 
database. Of these, we found significant alterations in 
19 genes associated with a cardiovascular system phe-
notype (P=5.04×10−3) when compared with randomly 
sampled gene sets (average number of cardiovascu-
lar phenotypes for random sets=9.3; Z=3.04). Notable 
overlapped genes are LDLR, LPL, and LIPA, as well as 
genes with strong common variant associations with 
CAD, namely MIA3 and DHX58. We also found that 

Figure 2.  Enrichment of Evolutionary Action–Machine Learning (EAML) candidates for direct overlap or interactions with 
known cardiovascular associations in clinical and genome-wide association studies (GWAS) data.
A, Enrichment for traits with genome-wide associations, performed using the functional mapping and annotation web portal. The left 
bar plot illustrates the fraction of genes for each enriched trait that overlaps with EAML genes. The right bar plot shows the adjusted 
P value for each enrichment. B, Overlap between EAML candidates and myocardial infarction-associated genes from ClinVar and 
GWAS Catalog databases. C, A density plot illustrating enrichment for EAML candidates within 500 kb of established coronary artery 
disease GWAS loci. The density plot represents the colocalization between GWAS loci and randomly sampled gene sets, and the red 
line represents the observed colocalization with EAML. The P value was calculated using a Z test. D, Receiver operating characteristic 
curves for network diffusion from EAML candidates to ClinVar- and GWAS-mapped genes (left). Distributions of areas under the curve 
(AUCs) based on 100 randomly sampled, degree-matched target gene sets (right). Dashed lines represent the experimental AUCs. E, 
Network-based clustering and functional enrichment of EAML candidates and previously reported myocardial infarction genes. The 
network was built using 79 EAML candidates and 103 known coronary artery disease risk genes from GWAS Catalog and ClinVar that 
interacted with one another in STRING version 11 (confidence >0.4). Modules were created using the Markov clustering algorithm with 
an inflation parameter of 3. Functional enrichment was performed for each cluster using g:Profiler. Red nodes represent EAML genes, 
and blue borders represent PubMed comentions with cardiovascular disease. BMI indicates body mass index; Lp-PLA2, lipoprotein-
associated phospholipase A2; FDR, false discovery rate; FPR, false positive rate; and TPR, true positive rate.
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Figure 3.  Estimated contributions of Evolutionary Action–Machine Learning (EAML) candidate variants to myocardial 
infarction (MI) risk.
A, Aggregate odds ratios (ORs) of EAML candidates based on nonsynonymous single nucleotide variants (SNVs) (adjusted P<0.01). B, 
ORs of nonsynonymous SNVs with adjusted P<0.01 in EAML candidates. C, Lollipop plot of nonsingleton missense SNVs in MST1R 
and MIA3. Circle size corresponds to Evolutionary Action (EA) score, and colored SNVs are significantly associated with early-onset 
MI in variant-level OR analysis (adjusted P<0.01). Red color corresponds to OR >1, and blue corresponds to OR <1.
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4 genes without previously reported MI associations 
(BMP2, TEFM, MARK2, and DBH) affected heart physi-
ology and inflammatory response. Despite having no 
direct CAD associations, BMP2 has been shown to be 
essential for proper cardiac development.82–84 MST1R 
models exhibit increased acute inflammation, whereas 
models targeting LEXM, B4GALNT3, and MARK2 ex-
hibit abnormal T-cell morphology. These data show the 
phenotypic relevance of the EOMI genes in the context 
of a model organism, supporting their predicted im-
portance in cardiovascular disease.

EAML Prioritizes Genes of Biological 
Importance in Cardiovascular Disease
To prioritize EOMI candidate genes that are most likely 
to hold biological significance in cardiovascular disease 
risk and mechanism, we combined the results from 
our validation analyses to build a gene prioritization 
score (Figure 4)85,86 based on 10 equally weighted ex-
periments in 5 overall categories: GWAS, relative risk, 
in vivo, eQTL, and literature. For the GWAS category, 
we aggregated criteria related to known cardiovascular 
associations, colocalization with an established GWAS 
loci (Figure 2C), and direct interaction with a GWAS-
reported gene in STRING (Figure 2E). For the relative 
risk category, positive criteria include having a statisti-
cally significant allelic OR (adjusted P<0.01) or contain-
ing any variant with a significant OR (Figure 3). The in 
vivo criteria include whether the gene showed cardio-
vascular phenotype evidence in the Mouse Genome 
Informatics database. The eQTL category contains 
criteria for the presence of cardiovascular cis-eQTLs 
in GTEx or STARNET (Figure S7). Lastly, the literature 
category contains evidence of comentions with either 
CAD or MI in PubMed titles and abstracts. Based on 
these criteria, MIA3 was the top gene with positive 
evidence in every category, followed by 13 genes with 
priority scores between 6 and 9: LDLR, LIPA, LPL, 
PROCR, WDR12, ZC3HC1, APOA5, CARF, HPR, DBH, 
DHX58, FAM177B, and MST1R. The top 8 genes all 
contain established links to CAD biology, whereas the 
subsequent 6 genes possess mostly circumstantial 
evidence. Among the potentially novel gene findings 
with little to no prior literature association with CAD or 
MI, the highest prioritized candidates were CARF and 
HPR, with a score of 7. CARF lies within the same re-
gion as WDR12, another previously reported CAD gene. 
Both genes are targeted by cis-eQTLs within the same 
locus87 and contain variants (rs72932557, rs35212307) 
that are associated with similar levels of increased 
MI risk. CARF was also identified as a key driver in a 
gene regulatory network derived from the STARNET 
cohort.64 HPR has functional evidence linking it to car-
diovascular biology through hemoglobin and HDL.88 
Next, DBH, DHX58, FAM177B, and MST1R had gene 

prioritization scores of 6. DBH is essential to noradren-
aline production, with liver-specific eQTLs (Table  S6) 
and knockout mouse models showing defects related 
to general development, heart morphology, and circu-
lating hormone levels.89 DHX58 has evidence from 2 
previous CAD association studies, 1 of which identifies 
the same risk-increasing coding variant as our study 
(rs2074158; OR, 1.22; P=9.58×10−6).70,90 FAM177B was 
scored as the top EAML candidate gene, yet there are 
no direct studies linking it to MI or CAD. However, our 
analysis suggests it is associated with a protective ef-
fect (OR, 0.89 [95% CI, 0.85–0.93]; P=2.×10−5), and 
intergenic variants have been associated with coro-
nary artery bypass grafting.91 Another interesting and 
novel candidate with a gene prioritization score of 5 
is INPP5F. It has not previously been associated with 
cardiovascular phenotypes and fails to colocalize with 
established risk loci, yet we find evidence supporting 
an association with CAD. The INPP5F gene-level (OR, 
0.91 [95% CI, 0.86–0.96]; P=6.2×10−4) risk appears 
mostly driven by the protective variant rs318805 (OR, 
0.88 [95% CI, 0.0.82–0.94]; P=3.3×10−4), which aligns 
with the functional role it plays in inhibiting STAT3 and 
its antiapoptotic/proangiogenic activity.92,93 These data 
show that by aggregating different types supporting 
evidence, we reaffirm genes with known CAD associa-
tions and prioritize genes with novel clinical and func-
tional insights.

DISCUSSION
Previously, we presented a novel genomic analysis 
framework, EAML, that combines ensemble machine 
learning with a continuous functional impact score for 
coding variants for discovering genotype–phenotype 
associations.33 Here, for cardiovascular disease and 
EOMI, we identified 79 genes with underlying muta-
tional patterns specific to EOMI, of which 60 were not 
previously linked to CAD, to the best of our knowledge.

Consistent with past works, our study shows that 
lipid metabolism continues to be the pathway most 
strongly associated with CAD risk. Mutations in LDLR, 
LPL, and APOA5 are known for their direct links to lipid 
metabolism and trafficking, with rare variants often 
being causal for familial hyperlipidemias.94–96 Although 
no individual variants in LDLR or APOA5 in the MIGen 
cohort are significantly associated with MI status, 
presence of any mutation in either of the genes shows 
an association with increased risk (ORs: LDLR 1.28 
and APOA5 1.20). In addition to these established risk 
genes, we identified HPR, MYBPHL, AMPH, ANXA4, 
and SLC17A2, all of which have little to no direct ev-
idence linking them to CAD. In particular, HPR was 
ranked in the top 10 genes in the prioritization table, 
has appeared in multiple studies associated with both 
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low-density lipoprotein97 and total cholesterol levels,98 
and is expressed exclusively in the heart and liver in 
GTEx samples. The HPR protein is known for its role 
in innate immune protection against trypanosomes 
through association with apolipoprotein L1–containing 
HDL particles,99 yet our results suggest that its role 
may extend beyond that in terms of impact on CAD 
risk. Additionally, MYBPHL has previously been char-
acterized for its function in cardiac conduction through 
atrial cardiomyocytes.100 There is also strong evidence 
associating the MYBPHL-containing locus 1p13.3 with 
decreased low-density lipoprotein cholesterol,101 which 
aligns with our data that MYBPHL mutations are asso-
ciated with a protective effect on EOMI risk (Figure 3A). 
Although it is well known that lipid metabolism is 

important in cardiovascular health, EAML further sup-
ports this by placing multiple associated genes in a 
functional context.

Following lipid metabolism, inflammation is the 
other major mechanism involved in all stages of ath-
erosclerotic progression, from plaque formation102,103 
to post-MI recovery.104 Three EAML genes, INPP5F, 
MST1R, and DHX58, were linked to inflammatory func-
tions. First, INPP5F has a gene prioritization score 
of 5 and lacks previous CAD evidence (Figure 4), yet 
showed an allelic association with EOMI risk and was 
directly linked to STAT3 (Figure 2E),92 an important in-
flammatory signaling regulator. INPP5F encodes the 
SAC2 protein, an inositol 4-phospatase involved in 
the endocytic recycling pathway.105,106 Inpp5f−/− mice 

Figure 4.  Prioritization of Evolutionary Action–Machine Learning candidates.
Criteria include (1) mapped to previously reported cardiovascular (CV) genome-wide association studies (GWAS), (2) located within 
500 kb of a previously reported GWAS locus, (3) first-neighbor interaction with a mapped GWAS gene in the STRING protein-protein 
interaction network, (4) gene-based odds ratio (OR) with adjusted P<0.01, (5) at least 1 variant with OR with adjusted P<0.01, (6) 
associated with CV phenotype in Mouse Genome Informatics database, (7) reported expression quantitative trait locus (eQTL) 
association in CV healthy tissue in the Genotype-Tissue Expression database, (8) reported eQTL association in CV tissues in the 
STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study, (9) text or abstract comention with myocardial 
infarction (MI), and (10) text or abstract comention with coronary artery disease (CAD). Each category is equally weighted, and the 
priority score is the sum of all categories. Colored fields indicate positive evidence for the given gene. CVD indicates cardiovascular 
disease; and GWA, genome-wide association.
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exhibit increased susceptibility to stress-induced car-
diac hypertrophy, and cardiac-specific overexpression 
led to a decreased hypertrophic response.107 Through 
its inhibition of STAT3, INPP5F may play an important 
role in JAK/STAT immune signaling, which is activated 
in response to acute MI.72 When acutely activated, this 
key inflammatory pathway invokes a cytokine cascade 
that exerts a cardioprotective effect through the regu-
lation of myocyte survival, whereas chronic activation 
of JAK/STAT signaling leads to cardiac remodeling 
and a decline in heart function.108 INPP5F likely plays 
a poorly studied role in these processes. A second 
potentially novel risk gene, MST1R (scored at 6), is a 
receptor tyrosine kinase that regulates wound healing 
and plays a role in both chronic and acute inflamma-
tion through macrophage recruitment.109,110 Our anal-
yses showed that MST1R is connected in STRING to 
EPOR, a regulator of JAK2 (Figure 2E), and contains 
a single nucleotide polymorphism that is directly as-
sociated with increased EOMI risk (R1335G; OR, 1.15; 
EA=43.52) (Figure  3B). MST1R has recently been 
identified by gene-based association tests for CAD,76 
and MST1R null mice have impaired nitric oxide lev-
els and increased tissue damage in response to acute 
stress.111 Third, DHX58 represents a previously re-
ported yet understudied association in the context of 
CAD.70,90 Although it does not link to the same immune 
pathways, evidence has shown that the downstream 
MAVS (mitochondrial antiviral signaling protein) reg-
ulates inflammation and fibrosis through NF-κB and 
MAPK with reduced expression of MAVS being associ-
ated with improved cardiac function.112 When linked to 
the increased relative risk from DHX58 coding mutants 
in our own study (Figure 3), this suggests that DHX58 
has direct functional importance in CAD.

Our findings also highlighted genes related to other 
mechanisms important to cardiovascular health, in-
cluding blood clotting, purine metabolism, and nic-
otinamide adenine dinucleotide (NAD) metabolism. 
EAML genes linked to these pathways include PROCR, 
SEC23IP, TEX264, PDE6A, ENTPD2, and QPRT. The 
blood clotting cluster centers around PROCR, which 
contains a variant we report as protective (rs867186; 
OR, 0.78), matching what was previously reported in 
a GWAS within the ATVB cohort.113 This same variant 
has also been previously associated with increased 
levels of protein C,114 increased levels of factor VII,115 
increased risk of venous thrombosis,116 and decreased 
risk of CAD.74 Also included in the blood clotting clus-
ter are SEC23IP and TEX264, both of which are novel 
risk genes that appear to be involved in endoplasmic 
reticulum–related functions. SEC23IP is involved in 
coat protein complex II (COPII)-mediated endoplas-
mic reticulum-to-Golgi trafficking,117 which is essential 
for the secretion of clotting-related factors, whereas 
TEX264 is involved in endoplasmic reticulum-phagy 

in response to nutrient stress.118,119 SEC23IP has also 
previously been associated with type 2 diabetes120 
and HDL cholesterol levels.121 A final interesting cluster 
is one primarily enriched for purine and NAD metab-
olism, containing 3 novel EAML candidates: PDE6A, 
ENTPD2, and QPRT. Although both pathways are less 
studied in the context of cardiovascular health, uric 
acid (a product of purine metabolism) has been as-
sociated with long-term cardiovascular risk,122,123 and 
experimental evidence has shown that NAD+ elevation 
can protect against cardiovascular outcomes in pre-
clinical models.124,125

Although the EAML method shows many advan-
tages such as the incorporation of a gene-based im-
pact score derived from evolutionary history and the 
use of ensemble machine learning, we could not con-
sider hyperparameter optimization for each individual 
classifier. Due to the algorithmic complexity of training 
9 classifiers for 18 000 genes, optimization would lead 
to an exponential increase in computing time and re-
quired computing power, without a guaranteed perfor-
mance improvement. To address this, we performed 
10-fold cross-validation for each individual classifier to 
minimize bias and overfitting/underfitting of the mod-
els by repeatedly testing each gene and averaging the 
results, and we strengthened our confidence in the 
resulting candidate genes through multiple indepen-
dent validation experiments. Specifically, we illustrate 
that these genes are reliably linked to CAD and have 
performed an extensive review of published evidence, 
showing that many of these genes have biologically 
relevant functions. Therefore, our observations sug-
gest that hyperparameter tuning was not a significant 
issue in the identification of CAD-associated genetic 
risk factors using EAML in the current study.

In conclusion, this study provides new insights into 
cardiovascular genetics by extending exome-wide 
associations with the combination of evolutionary in-
formation and supervised machine learning. Although 
EAML is still limited to analyzing individual genetic risk 
factors as in standard GWAS methods, it is broadly ap-
plicable to case–control whole exome studies. In ad-
dition to solidifying the role of several common genetic 
risk factors, EAML discovered both novel and previ-
ously known risk genes that had only been associated 
with CAD through noncoding variation. Furthermore, 
several EAML candidates without direct cardiovas-
cular associations were closely related to established 
CAD risk loci, and linked together in gene clusters en-
riched in biological functions related to known disease 
mechanisms. Lastly, our study illustrates that protein-
coding variation has a significant impact on complex 
disease risk. Our findings have the added benefit of 
being directly targetable in future mechanistic studies 
and are applicable to polygenic risk methods, which 
can further inform cardiovascular causes.
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