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ABSTRACT

Discovering rare cancer driver genes is difficult
because their mutational frequency is too low
for statistical detection by computational meth-
ods. EPIMUTESTR is an integrative nearest-neighbor
machine learning algorithm that identifies such
marginal genes by modeling the fitness of their muta-
tions with the phylogenetic Evolutionary Action (EA)
score. Over cohorts of sequenced patients from The
Cancer Genome Atlas representing 33 tumor types,
EPIMUTESTR detected 214 previously inferred can-
cer driver genes and 137 new candidates never iden-
tified computationally before of which seven genes
are supported in the COSMIC Cancer Gene Census.
EPIMUTESTR achieved better robustness and speci-
ficity than existing methods in a number of bench-
mark methods and datasets.

INTRODUCTION

Many approaches that link genotype to phenotype were de-
veloped to identify cancer driver genes in the hope that ex-
perimental screens would then validate some as drug tar-
gets for treatment (1–6). Many of the methods are based
on genome sequencing of tumors and rely on the frequency
to which a gene is mutated to identify genes that are under
positive mutational selection in tumors (2,3,7–9). Unfortu-
nately, most tumors have a large fraction of benign passen-
ger mutations (10). Therefore, the methods that rely on mu-
tation frequency to identify driver genes tend to remain in-
sensitive (11–13), regardless of the specific computational
and statistical evaluations of whole exome somatic muta-
tions (14–16).

Defining an accurate label for samples is essential for pre-
diction of driver genes and is one of the most challenging
tasks for physicians (17). Machine learning is an alterna-
tive technique that can discover and identify driver genes in
complex diseases (18) and relationships between genotype–
phenotype (19–21). Recently, many machine learning meth-
ods have been developed to reveal the ambiguity of the
genotype–phenotype relationship (3,17–30). In addition,
prediction of cancer driver genes that can stratify cancer
patient survival rates requires improvements. Given that
the most important challenge in machine learning is to de-
fine the right label (e.g. a binary classification label like
1’s for cases and 0’s for controls or quantitative label like
continuous values) for samples (31), several studies used
pathways as label (23,32–34) or utilized matched normal
subjects and cancer patients as a binary classification la-
bel (35–38). Despite the strength of these techniques, the
low frequency of mutations separating the few function-
ally relevant ones from the vast majority of random ones
with no functional relevance is close to the noise thresh-
old. Both relevant and irrelevant random mutations are
likely driven by the same random mutagenic processes in
tumor cells (replication errors, DNA damage events from
mutagens, etc.). Presumably, sequencing artifacts are mostly
eliminated by sophisticated mutation calling methods and
germline mutations are easily eliminated by comparing se-
quences of non-tumor tissues to tumor tissues (11,12,39).
Other studies have reported ways to identify mutation
drivers through their pattern of mutations (2,40). However,
previous studies on the TCGA PanCancer dataset were lim-
ited to a sublist of all tumor types (41) and avoided low
mutation frequency from low functional impact mutations
(13). Additionally, despite experimental and clinical stud-
ies on epistasis effects among mutations by considering mu-
tual exclusivity among tumor samples (42–44) PPI network
(45–47), there is no previously reported machine learning
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method to consider the epistasis effects of cancer somatic
mutations.

A formal perturbation equation describing the genotype–
phenotype relationship was proposed (48) to compute the
fitness effect, or Evolutionary Action (EA), of mutations.
This equation is a product between the size of a mutation
and the functional sensitivity at the position being mutated.
EA quantified the likely functional impact of individual mu-
tations on par or better than other methods in blind and
objective assessments (49), and also helped in the interpre-
tation of exome data (50), ignoring any interaction effects.
Newer methods have begun to integrate EA over entire pop-
ulations of mutations in cohorts of patients (51–54), Cohort
Integral (CI) (55). These attempts sum the separate effects
of individual mutational steps to identify genes for specific
traits or diseases. None, however, capture interaction epis-
tasis effects, which we now try to do with application to the
low mutational frequency of cancer driver genes.

Here, we used whole exome data from The Cancer
Genome Atlas (a publicly available MAF file that was
compiled by the MC3 working group and is based on
the consensus calls from seven software packages) patients
through a machine learning procedure based on the nearest-
neighbor machine learning feature selection algorithm that
uses the advantage of a multigene interaction (epistasis) ap-
proach to find driver genes which link to different tumor
types. Briefly, EA scores of the functional impact of coding
mutations follow nearly exponential action distribution for
human coding polymorphisms (48). We build self-defined
synthetic controls by random selection from the EA scores
of all possible single nucleotide changes in gene perturba-
tion for the human genome sequence. Comparing to EA
scores of somatic mutations which tend to have loss of func-
tion and gain of function which is not biased to exponential
distribution, we will have distributions of cases and controls
that are significantly different. Given that, we use the Reli-
efF feature selection algorithm (56,57) to weigh the genes
importance that is based on k nearest neighbor (k-NN) clas-
sification. The output will be a list of genes that could drive
cancer across all cancers or in individual cancers. Mapping
was performed between specific cancer driver genes and the
cell line primary disease annotator from DepMap to assess
the recovery of known cancer genes.

MATERIALS AND METHODS

Data preparation

TCGA sequence data was obtained from the MC3 Work-
ing Group, which recently compiled a publicly avail-
able MAF file (syn7824274, https://gdc.cancer.gov/about-
data/publications/mc3-2017) annotated with filter flags to
highlight potential artifacts and discrepancies (58). This
contains the most uniform attempt to catalogue Cancer
Genome Atlas (TCGA) somatic mutations and provides
consensus calls from seven software packages for 33 tumors
(58). The possible artifact flags include strand-bias, contam-
ination, oxo-guanine artifacts, and low normal read depth,
and the ‘PASS’ label assigned to a mutation that was called
by at least two callers. Five of the seven software packages
related to Single Nucleotide Variants (SNV) and three of
them related to short Insertion Deletion (INDEL) events,

where VarScan 2 provides both types of analysis. Seven
software packages consist of: VarScan2 (59), MuTect (60),
SomaticSniper (61), Indelocator (62), Pindel (63), RADIA
(64) and MuSE (65). For our analysis, we used the prepro-
cessed MC3 dataset (22) with the following quality controls:
excluding hypermutated samples according to Tukey’s out-
lier condition (more than 1.5 times the interquartile range
from the quartiles) if mutation numbers in a sample ex-
ceeding 1000, and samples that are flagged by the analy-
sis working group based on pathology. In addition, we fil-
tered out all hypermutated samples exceeding 1,000 muta-
tions. We considered all samples in the dataset and ended
up with 9,973 samples from 33 tumor types having a total
of 1,087,555 mutations with 1,006,892 missense mutations,
76,386 nonsense mutations, 1,276 nonstop mutations, 1,645
translational start site mutations, 85 splice site mutations,
999 frameshift deletions and 272 frameshift insertions.

Evolutionary action to score functional impact of mutations

Evolutionary Action (EA) (48) is a method that estimates
the functional impact of missense mutations using pro-
tein homology data. We represent evolutionary fitness as a
genotype–phenotype relationship, where the estimation of
the fitness effect for each missense mutation from amino
acid X to any other amino acid Y at sequence position i, will
drive a phenotype change through an evolutionary func-
tion:

�ϕ ≈ ∂ f
∂ri

· �ri, X→Y.

where �ϕ is the action of the mutation Δr on the fitness
with inverse amino acid substitution log-odds, · denotes
the scalar product, and ∂ f /∂r is the mutated site sensitiv-
ity to the genotype changes computed with Evolutionary
Trace (ET) (66) ranking of importance. EA accurately pre-
dicts the impact of mutations in complex molecular ma-
chines. It also outperformed competitive entries in Criti-
cal Assessment of Genome Interpretation (CAGI) competi-
tions (49,50). EA scores are available for nonprofit use: http:
//eaction.lichtargelab.org.

EPIstasis MUTations ESTimator (EPIMUTESTR)

In general, to use machine learning classification meth-
ods, we need to have case and control datasets to identify
biomarkers that are highly correlated to case/control labels
that lead to understanding the cause of the disease (67).
Starting with the preprocessed MC3 dataset (22), we anno-
tated it with EA methods to give every mutation an impor-
tance score. We designed the EPIMUTESTR algorithm in
four parts: (A) take the EA annotated MC3 datasets as in-
put; (B) construct a case matrix (M) of samples (i) by genes
(j), where each entity (Mij) is the maximum EA score among
all mutations per gene. Construct an empty control matrix
(Nij) of the same size of case matrix and fill with the syn-
thetic EA scores by maintaining the same mutational signa-
ture rate from the case matrix; (C) from the ReliefF feature
selection family (56,57) we used relevant estimation of fea-
tures that is based on the k-nearest neighbor (k-NN) algo-
rithm. It takes the case and control matrix of the EA scores
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of coding variants as training features to identify which
genes taken together can best distinguish cases from ran-
dom controls; (D) the result will be a list of gene weights
which, after square root back-transformation into a Gaus-
sian distribution, will let us pick the most important ones in
the right tail with q-value < 0.1.

The process of simulating the synthetic control matrix is
as follows: for a given gene, we randomly selected the same
number of mutations across all samples from all possible
single nucleotide changes in a given canonical transcript of
the gene by keeping the mutational signature rate. In step C,
k-NN is the core part of EPIMUTESTR. k-NN uses a dis-
tance metric (Euclidean or Manhattan) to classify the sam-
ple (cases/controls) in which we could get the advantage of
distance metric through this algorithm in order to weigh the
genes. Basically, samples that are in one class (case or con-
trol) have very close EA scores (this is also true in fitness
effect of mutations) and those samples that are in different
classes (case and control) have very different EA values. We
used this technique to weigh the genes using their EA scores
for the samples that are in the same class or different classes.
Therefore, each gene gi (the ith gene) starts with an initial
weight W0(gi) = 0. For random sample s, this weight is up-
dated iteratively:

W(t+1) (gi ) = Wt (gi ) − di f f (gi , s, h)2 + di f f (gi , s, m)2

to favor or penalize weights that yield large Manhattan sep-
aration distances between s and nearest neighbor of the op-
posite (miss (m)) or of the same class (hit (h)), respectively.
Terms di f f (gi , s, h)2 and di f f (gi , s, m)2 are used for cal-
culating the distances between random sample(s) and the
nearest neighbors (hit (h) or miss (m)). We maintain these
two weights for all genes and repeat for all the samples and
add or subtract the distance value from previously main-
tained weights. The final gene’s weight is simply the sum
of distances across all genes. k-NN can efficiently take into
consideration all genes at once and is robust with respect
to incomplete data. There are two different approaches for
neighbor finding: specify fixed k or neighborhood radius
that varies for each sample. The radius for each sample can
be defined as the average of all Manhattan distances of sam-
ple to all other samples subtracted by half of their standard
deviation (68). It has been empirically shown that for bal-
anced cases and controls datasets an approximation to the
expected number of neighbors within the radius approaches
is (n – 1) × 0.154, where n is the total number of samples
(69), but the choice can have a large impact and can be op-
timized for feature estimation (70).

Avana CRISPR screen

We used the Avana CRISPR screen database down-
loaded from DepMap (https://depmap.org/) that includes
the CRISPR (Broad Avana) screen data (71,72), the cell
lines, and merged mutation calls (coding region, germline
filtered) from Cancer Cell Line Encyclopedia (CCLE)
(73,74). We annotated all the missense variants using the
EA equation and put them into two categories: moderate
EA (30 ≤ EA score < 70) and others (low EA variants 0
≤ EA < 30, high EA variants 70 ≤ EA < 100, nonsense
variants). We have six gene sets to be compared: (i) random

genes consisting of 100 random genes selected from all the
cell lines in the Avana set which is 17,632 screened genes,
(ii) oncogenes from the Cancer Gene Census (COSMIC)
(v79), (iii) CE: core essential genes from the CRISPR screen
database, (iv) NE: non-essential genes from the CRISPR
screen database, (v) EPIMUTESTR PanCancer: all can-
didate genes identified as oncogenes in PanCancer and
(vi) EPIMUTESTR individual cancers: all candidate genes
identified as oncogenes in individual cancer types. The map-
ping between specific cancers from TCGA and the cell line
primary disease annotator from DepMap includes: BLCA
(bladder urothelial carcinoma), BRCA (breast invasive car-
cinoma), CESC (cervical squamous cell carcinoma), COAD
(colorectal adenocarcinoma), GBM (glioblastoma multi-
forme), HNSC (head and neck squamous cell carcinoma),
LIHC (liver hepatocellular carcinoma), OV (ovarian serous
cystadenocarcinoma), SKCM (skin cutaneous melanoma),
STAD (stomach adenocarcinoma).

Guidelines for evaluating state-of-the-art algorithms

We used four assessment guidelines suggested by Tokheim
et al. (26) to compare state-of-the-art algorithms with
EPIMUTESTR toward cancer driver discovery. Given their
preprocessed PanCancer MAF dataset derived from 7916
cancer patients with 34 specific tumors, they defined four
evaluation criteria as follow: (a) the fraction of over-
lap between pan-cancer genes and the COSMIC Cancer
Gene Census (75); (b) consensus of mutual co-occurrence
genes among seven methods including: MutsigCV (3), Ac-
tiveDriver (76), MuSiC (77), OncodriveClust (41), Onco-
driverFM (78), OncodriverFML (5), Tumor Suppressor
and Oncogenes (TUSON) (79); (c) the consistency of top-
ranked genes of two random splits of samples and (d) mean
absolute log2 fold changes (MLFC) metric to find the dis-
crepancy deviation between a uniform p-value distribution
and p-value distribution reported by a method.

Network of cancer genes Enrichment

Network of Cancer Genes (NCG6.0) (80) database is a
manually curated repository of 2,372 known cancer genes
associated with cancer. They are collected from 275 publi-
cations and 273 cancer sequencing screens of 34,905 donors
and multiple primary sites from 100 cancer types. Disease
Ontology Semantic and Enrichment (DOSE) analysis (81)
provides semantic similarity computations between terms
and genes to find the similarities of diseases and gene func-
tions including hypergeometric tests. We used DOSE (R
package) to query candidate genes through NCG and per-
form enrichment analysis.

PubMed literature search

PubMed literature search is a way to query PubMed
for each gene, cross-indexing the keywords ‘cancer’ and
‘protein/gene’. We calculated the hypergeometric test of
genes that appeared in the PubMed literature to find the
gene enrichment with cancer association. We used Entrez
package from Bio library (Python package) to query the
candidate genes and determine the number of publications
associated with the key words.
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Classification of tumor suppressor genes and oncogenes

A useful classification tool for candidate driver genes is
subcategorization as either tumor suppressor genes (loss of
function) or oncogenes (gain of function). We subclassified
each candidate driver gene as a likely oncogene or tumor
suppressor gene through an empirically derived formula.
Using the TCGA PanCancer classification of 299 identi-
fied cancer driver genes reported by Bailey et al. (22) we de-
termined total numbers of non-synonymous missense and
truncating mutations for each of the driver genes labeled as
PanCancer oncogenes or tumor suppressor genes. We then
determined the ratio of missense mutations to truncating
mutations for each of these genes. The oncogene drivers had
a mean ratio of 30.0 missense/truncating mutations (ratios
ranged from 6.6 to 217.8). The tumor suppressor drivers
had a mean ratio of 2.21 (ratios ranged from 0.53 to 4.18).
The missense/truncating mutation ratio of all exomic genes
(>99% non-driver controls) sequenced by the TCGA Pan-
Cancer Project was 7.26.

EPIMUTESTR candidate driver genes were
also categorized as likely tumor suppressors
(missense/truncating mutation ratios < 4.0) or likely
oncogenes (missense/truncating mutation rations > 12.0).
Candidate drivers with ratios between 4.0 and 12.0 were
classified as indeterminate. Also, candidates with total
non-synonymous mutation numbers <15 were classified as
indeterminate.

RESULTS

EPIMUTESTR predicted 418 candidate cancer driver genes

The main steps of EPIMUTESTR (Figure 1) are: (A) In-
put preparation by annotating EA scores to all missense
and truncating (nonsense, nonstop, translational start site,
splice site, frameshift deletions and frameshift insertions)
mutations of each TCGA sample (10,265 samples and
2,013,635 missense and nonsense mutations from the MC3
preprocessed dataset (see Materials and Methods)), and by
generating a matrix of samples by genes, where the max-
imum EA score of each gene will be the training feature.
(B) For controls, we also created for each patient a size-
matched random matrix. Specifically, we randomly selected
for each gene as many mutations as there are for that gene
in the patient matrix from all possible nucleotide changes
for that gene (incorporating mutational signature) and used
maximum EA score as training feature. (C) To train the k-
NN classifier, each gene was assigned a weight based on a
k nearest neighbor algorithm in n-dimensional (n = total
number of genes) Manhattan space (56,57) with optimized
k (69). For this, we combined a patient matrix with a syn-
thetic control matrix row wise and assigned case label (1’s
for patient samples) and control label (0’s for synthetic con-
trol samples). Then, starting with 0 weight for all the genes,
the genes’ weights were updated based on the k-NN classifi-
cation (see Materials and Methods). The rationale is that an
important feature (or gene) can segregate samples between
different classes. Furthermore, all the genes were taken into
account for classification, so our method captures interac-
tion (epistasis) effects among genes and local dependencies
(82,83). (D) The last step identifies putative cancer driver

genes in the form of gene weights in which each gene has
a valence, and since there is no standard threshold to se-
lect the top genes, we square-transformed the weight dis-
tribution of all genes into a Gaussian distribution and cal-
culated p-value for each gene using 1-(cdf). We then calcu-
lated the adjusted p-value using the Benjamini–Hochberg
method in order to use the standard q-value threshold (0.1)
for two reasons: first, to get the most significant genes; and
second, to get fewer gene numbers (because the standard p-
value threshold (0.05) gives us more genes that increase the
risk of false positives). In order to minimize false positive
genes, we replicated EPIMUTESTR 10 times with different
synthetic controls. We sorted the genes based on the lowest
q-value in each replication and considered the genes with at
least five times co-occurrence (70). This procedure identified
407 candidate genes from all cancer types separately, and 11
additional PanCancer genes (Supplementary Table S1). In
total, our final gene list is 418 genes (Supplementary Table
S1), which falls within the range of number of genes identi-
fied by other methods (40–429, (2,3,7,22,26,42,77,79)).

Comparison to other predicted and known cancer driver genes

In order to evaluate our cancer driver gene list, we first
compared to previously published cancer driver gene lists.
We collected known cancer genes from 10 sources (namely,
COSMIC Cancer Gene Census (75), TUSON (79), MuSic
(77), MutSigCV (2), MutSig2CV (3), 2020 (40), 2020+ (26),
Bailey et al. (22), Ding et al. (42) and dNdScv (7)) and con-
sidered only those genes present in at least two to obtain
428 imputed ‘gold standard’ putative cancer driver genes
(Supplementary Table S2). EPIMUTESTR recovered 168
(39.3%) of these genes (Fisher exact test, p-value = 6.7e–
147).

Experimental results to validate EPIMUTESTR oncogenes

The CRISPER-Cas9 system is a powerful tool for multi-
plexed screening to systematically identify genes relevant to
cancer cell division and survival. It has been used to build
a Cancer Dependency Map (DepMap) database (84) and
catalogs cell-line-specific genetic and chemical vulnerabili-
ties of CRISPR-Cas9 loss-of-function screens in 342 cancer
cell lines. The Broad Institute developed CERES (71,72) to
estimate the degree of essentiality of individual gene expres-
sion for survival and division of cancer cell lines following
CRISPR/Cas9-engineered gene ablation. In order to find
out whether EPIMUTESTR genes were cancer essential we
used the CERES method to compare their ability to match
DepMap data compared to common core essential genes,
COSMIC genes, EPIMUTESTR genes from each individ-
ual cancer, EPIMUTESTR genes from PanCancer, non-
essential genes and random genes. We retained genes in the
moderate category (30 < EA score < 70) that are considered
as likely oncogenes and we observed that EPIMUTESTR
performs similar to common core essential genes and out-
performs COSMIC genes (t-test p-value < 0.07) (Figure 2).
These data suggest that EPIMUTESTR effectively identi-
fied genes that are relevant to cancer-specific vulnerabilities
(Kruskal-Wallis, p-value < 2.2e–16). We also compared the
distribution characteristics of the EA scores for an essen-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/12/e70/6567478 by guest on 19 June 2024



PAGE 5 OF 13 Nucleic Acids Research, 2022, Vol. 50, No. 12 e70

Figure 1. Workflow schema of EPIMUTESTR that is based on k-NN method and developed in four parts. (A) Input: missense and truncating mutations
from standard MC3 dataset annotated by EA method. (B) Create random control: considering maximum EA score among all mutations in a gene as
a training feature and creating synthetic control by random selection of EA scores from the background mutations that consists of all possible single
nucleotide changes for each transcript (distribution plot at the top right). The orange squares indicate the cases samples, and the green squares indicate the
controls samples. (C) Relevant estimation of genes: using k-NN algorithm on the training data, where in step-1 a random sample with k nearest neighbors
around it are selected and in step-2, starting zero weight for each gene, depends on whether the random sample (black circle) is in the case class (orange
circles) or control class (green circles) the difference of normalized EA score will be penalized by −di f f (gi , s, h) or awarded by di f f (gi , s, m) to weigh
the genes. (D) Final genes weights are a non-gaussian distribution that using square root transformation, we back-transform to the Gaussian distribution
and select the significant genes at the right tail using cumulative distribution function.

Figure 2. Comparison of DepMap Ceres Score for EPIMUTESTR can-
didates, COSMIC genes, core essential (CE) genes, random and non-
essential (NE) genes. EPIMUTESTR oncogenes splitted to oncogenes in
all individual cancers (EPI. Indiv.) and oncogenes in pan-cancer (EPI.
PAN). The y-axis shows the Ceres Score from non-essential to essential
(–3, +1). And the horizontal dash line indicates the critical cut-off point
(–0.5) for oncogenes in DepMap. The significance p-values (t-test) indicate
the difference between each pair. And the overall Kruskal–Wallis p-value
indicates the significance of comparison.

tial gene, non-essential gene, and a random gene in Pan-
Cancer (Supplementary Figure S1). The random gene and
non-essential gene distributions have a similar characteris-
tic with bias to low EA scores (exponential distribution),

whereas the essential genes bias to high EA scores (reverse
exponential distribution). Since the EPIMUTESTR algo-
rithm weighs the essential genes higher than normal genes,
they tend to be in the significant genes list. To show this, we
calculated hypergeometric test between gold standard genes
and essential/non-essential genes to compare the overlap
genes, and we noticed a significant enrichment between es-
sential genes and gold standard genes (p-value: 2.3e–19).

Robustness in downsampling

In order to evaluate the robustness of the EPIMUTESTR
pipeline, we next performed a downsampling analysis
for several tumor types (LUAD, BRCA, BLCA, HNSC,
UCEC and OV). We compared EPIMUTESTR with dNd-
Scv (7) which is a well-known method to detect cancer
driver genes under positive selection. For this, we itera-
tively removed 5% of random samples and each time ran
EPIMUTESTR and dNdScv to investigate the significance
of the number of driver genes. In each step, we repli-
cated the 5% random removal ten times to calculate the
error bar (Figure 3) and we observed that both meth-
ods can detect the core genes throughout the downsam-
pling flow (Supplementary Table S3) but EPIMUTESTR
is able to detect more cancer driver genes. This analy-
sis suggests that EPIMUTESTR is very robust to down-
sampling and does not need very large patient cohorts to
work.
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Figure 3. Comparison of robustness between EPIMUTESTR (blue curve) and dNdScv (green curve) by downsampling. The x-axis indicates the number
of samples and y-axis indicates the number of overlap genes between candidate genes and manually created list of known cancer driver genes from ten
resources. The vertical lines in each step indicate the error bars.

Well-connected to human curated network of cancer genes
and PubMed literature searches

We further confirmed an association between
EPIMUTESTR genes and cancer with two other types
of evidence: using DOSE (81) to enrich for known cancer
genes from NCG (80) and occurring in at least 10 PubMed
cancer publications (Figure 4A). For the remaining 250
unidentified genes, we found 56 genes supported by both
types of evidence, 91 genes supported by one type of
evidence, and 103 genes remained unidentified by any of
the evidence sources (Figure 4B). We compared the enrich-
ment analysis with all genes from PanCancer (18,696) for
NCG (Fisher exact test p-value < 3.8e–116) and PubMed
(Fisher exact test p-value < 1.9e–43). Overall, these results
suggest that the most EPIMUTESTR candidate genes are
connected to the human curated network of cancer genes
and the PubMed literature.

Methodological control: EPIMUTESTR outperformed
state-of-the-art cancer driver prediction methods and is
robust

There are many lists of candidate cancer driver genes gen-
erated by various cancer driver prediction methods. In or-

der to compare the performance of EPIMUTESTR to these
state-of-the-art methods, we used the assessment criteria
suggested by Tokheim et al. (26). We used their prepared
dataset consisting of 7916 cancer patients affected by 34 dif-
ferent types of specific cancers, and accompanying software
to evaluate through standardized tests set by Tokheim et al.
(26) the performance of EPIMUTESTR against nine state-
of-the-art methods in (MutsigCV (2), ActiveDriver (76),
MuSiC (77), OncodriveClust (41), OncodriverFM (78), On-
codriverFML (5), Tumor suppressor and Oncogenes (TU-
SON) (79). These criteria were the fraction of overlap with
CGC (Figure 5A), agreement between methods (Figure
5B), p-values deviation from standard uniform distribution
(Figure 5C), and consistency of top genes over the two ran-
dom splits of datasets by preserving the same proportion
of specific cancer patients in each split (Figure 5D). The
EPIMUTESTR overall performance was the best among
other methods in Cancer Gene Census (CGC) from COS-
MIC, consensus genes, and the second best in consistency of
subsampling in all the methods; and p-value deviation (Fig-
ure 5E). These evaluations and comparisons demonstrate
that the EPIMUTESTR outperformed the methods in (26)
evaluation guidelines, including the machine learning meth-
ods.
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Figure 4. Novel genes well-connected to human curated network of cancer genes and PubMed literature searches. (A) Comparing EPIMUTESTR candi-
date genes and entire genes in Network of Cancer Genes (NCG) and PubMed literature search. The dark gray color indicates the number of genes that
found in NCG and PubMed. The light gray color indicates the number of genes that are not in NCG and PubMed. For PubMed, we also looked at the
number of genes in 1–10 publications. The significant p-value (fisher exact test) compares the two bar plots. (B) Confidence of cancer association for 418
EPIMUTESTR candidate genes.

Figure 5. Panel of comparison for state-of-the-art cancer driver prediction methods (Tokheim et al., 2016). (A) Cancer Gene Consensus (CGC) overlap:
the bar plot compares the number of overlap genes between each method and CGC genes (downloaded 29 March 2021). The y-axis indicates the fraction
of driver genes (q < 0.1) with CGC. Number of overlapped driver genes indicated at the top of each bar. (B) Method consensus: the number of agreements
between methods. The black color indicates the number of agreements that is at least in four methods, purple color indicates the number of agreements
in three methods, yellow color indicates the number of agreements in two methods, and the white color indicates the predicted by one method. The y-axis
of bar plot is calculated based on the fraction of predicated genes over all genes. (C) The p-value deviation: this bar plot implicated the divergence from
uniform p-values, measured as a mean log fold change (MLFC) between the method observed and theoretical p-values, to show how far the top significant
genes are from each other. (D) Consistency bar plot to show the top drop genes consistency. We have filtered the top 30 genes across 10 random splits of
PanCancer by preserving the proportion of each cancer type in each split. We repeated this process by increasing the cut-off point for selecting the top 20,
30, 40, 50, 100, 150, 200, 250 and 300 genes. EPIMUTESTR started to perform worse after we increase the top genes. (E) Overall ranking of methods. The
x-axis indicates the four guidelines test, and the y-axis indicates the ranking. The higher the ranking the better the performance.
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Table 1. Confidence of cancer association

EPIMUTESTR (418)

Method agreements No. overlap P value Unidentified

All methods (7) 7 2.1e-23 381
Nine methods (37) 37 2.0e-94
Eight methods (65) 61 4.5e-135 357
Seven methods (89) 75 4.8e-148 343
Six methods (121) 99 1.6e-179 319
Five methods (161) 114 5.7e-181 304
Four methods (208) 130 4.4e-182 288
Three methods (279) 145 2.5e-170 273
Two methods (428) 168 2.8e-144 250
One method (1358) 214 3.8e-24 204

Potential discovery/functional roles: pathway enrichment

Among all EPIMUTESTR candidate genes, there were 250
genes that were not identified in the manually created list
of known cancer driver genes resources (Table 1). We re-
viewed the EA score distribution of these genes and sys-
tematically narrowed the focus to genes with 80% of mu-
tations having an EA score greater than 30. We ended up
with 137 novel candidate cancer driver genes (Figure 6). We
used pathway enrichment assessment to characterize the bi-
ological function of these genes. We queried 137 candidate
genes through Molecular Signature Data Base (MSigDB)
(85) to enrich for known pathways and calculated the hy-
pergeometric test and false discovery rate (FDR) using the
Benjamini–Hochberg method to correct for multiple test-
ing. We found 10 Reactome pathways that were enriched
with FDR < 0.05 including pathways directly related to
cancer such as Integrin cell surface interactions (q < 4.0–
e02) (86), RNA polymerase II transcription (q < 4.1–e02)
(87), and NCAM signaling for neurite out-growth (88) is
potential cancer related (q < 1.8–e02) (Table 2).

Novel cancer driver candidates implicated by
EPIMUTESTR

After EA-based filtering EPIMUTESTR identified 137
novel cancer driver gene candidates not identified by the
other driver gene identification methods described in Fig-
ure 6. To demonstrate that these novel driver candidates
were enriched for bona fide cancer drivers, we performed
a comparison of our 137 novel candidates with a random
set of 137 genes not identified by our methods or any of
the previous computational methods. First, we screened the
EPIMUTESTR novel candidates in the COSMIC Cancer
Gene Census, an expert panel curated catalogue of over
700 genes exhibiting cancer mutational patterns and func-
tional impact data sufficient to be labeled as cancer drivers
(89). We identified 7 of our 137 EPIMUTESTR novel can-
didates in the Cancer Gene Census, whereas none of the
random 137 genes were found in the Cancer Gene Census.
The seven genes were TP63 (TP53 family member), BCL6
(lymphoid cell transcriptional repressor), ZEB1 (transcrip-
tion factor mediating epithelial mesenchymal transition),
ACSL3 (lipid biosynthesis enzyme), CNTNAP2 (neural cell
adhesion molecule), NTRK3 (neurotropic tyrosine kinase
receptor), and IKZF1 (hematopoietic transcription factor
associated with chromatin remodeling).

We also determined the number of cancer-associated
publications in PubMed for each of the 137 EPIMUTESTR
novel candidates and the 137 random gene controls.
The EPIMUTESTR candidates averaged 131.2 cancer-
associated publications per gene versus 43.6 such publi-
cations per random control gene. The seven novel candi-
date drivers discussed above that were in the Cancer Gene
Census were also characterized by high numbers of cancer-
associated publications in PubMed, with three of these
genes discussed in over 1000 cancer-associated publications.
However, the most frequent number of cancer citations
found among the novel cancer candidates was for TOP2A.
TOP2A was not listed in the Cancer Gene Census but has
been linked to cancer in over 3500 publications in the cancer
literature. TOP2A encodes DNA topoisomerase II alpha,
an enzyme that catalyzes transient breaking and rejoining of
double stranded DNA, thus facilitating DNA helix winding
and unwinding (90,91). TOP2A is involved in critical cellu-
lar processes such as chromosome condensation and sepa-
ration, as well as DNA transcription and replication. Im-
portantly, it is often overexpressed in multiple cancer types
and is targeted by 10 approved chemotherapeutic agents
(92,93). The Cancer Dependency Map (DepMap) Project
lists TOP2A as a common essential gene for proliferation
of many cancer cell types (94).

Thus, among our 137 novel candidates we have identified
seven novel expert curated cancer genes and one highly cited
oncogene not identified by previous computational meth-
ods, indicating a further enrichment for previously undis-
covered cancer driver genes. Future functional and can-
cer genomics studies should provide additional light on
whether these novel candidates are bona fide cancer drivers.

DISCUSSION

Many clinical and experimental approaches have attempted
to find driver genes in cancer by simple mathematical and
statistical models (1,2,4,15,25,78), but they have often been
limited by mutation frequency (11–13), and epistasis effects
of mutations (42–44). In addition, advanced statistical stud-
ies used machine learning approaches to optimize the so-
matic mutation detection in human cancer. However, re-
cent studies revealed machine learning methods can accu-
rately detect candidate driver genes in TCGA data, but the
key point to success in these approaches is to use the right
cohort as training data (3,17–27). Our approach relies on
the Evolutionary Action (EA) method, to score the fitness
effect of coding variants. Other methods compute related
scores (95–99). However, not all such scores are the same
and several reasons led us to the choice of using EA. First,
the Evolutionary Action method estimates the fitness ef-
fect of mutations. Other methods, such as Polyphen2 rather
offer the probability of each mutation to be deleterious or
neutral, ignoring the fact that gain of function variants (as
those seen in oncogenes) are neither deleterious nor neu-
tral. Second, the overall EA scores of fitness effect in the
human genome follows an exponential distribution (Sup-
plementary Figure S1), where the outcome of other meth-
ods may be mostly bimodal or very different than the ex-
ponential distribution expected for a distance approxima-
tion (as proposed by Fisher in his geometric model of fit-
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Figure 6. Filtering novel cancer driver candidates implicated by EPIMUTESTR. The left figure illustrates the EA distribution of 250 unidentified genes,
and the left figure illustrates the filtered genes with EA > 30 in more than 80% of mutations. The x-axis indicates the EA scores, and y-axis indicates the
frequency in both plots. The bar over 100 EA scores indicated the truncating mutations. KS test p-value indicates that the two distribu

Table 2. Pathway enrichment

Gene set name
No. genes in
gene Set (K) Description

No. genes in
overlap (k) k/K p-value

FDR
q-value

REACTOME COLLAGEN
FORMATION

90 Collagen formation 5 0.0556 1.47E-05 1.25E-02

REACTOME COLLAGEN
CHAIN TRIMERIZATION

44 Collagen chain trimerization 4 0.0909 1.56E-05 1.25E-02

REACTOME NERVOUS
SYSTEM DEVELOPMENT

580 Nervous system development 10 0.0172 3.15E-05 1.68E-02

REACTOME MUSCLE
CONTRACTION

195 Muscle contraction 6 0.0308 5.76E-05 1.85E-02

REACTOME NCAM
SIGNALING FOR NEURITE
OUT GROWTH

63 NCAM signaling for neurite
out-growth

4 0.0635 6.51E-05 1.85E-02

REACTOME COLLAGEN
DEGRADATION

64 Collagen degradation 4 0.0625 6.92E-05 1.85E-02

REACTOME COLLAGEN
BIOSYNTHESIS AND
MODIFYING ENZYMES

67 Collagen biosynthesis and
modifying enzymes

4 0.0597 8.29E-05 1.90E-02

REACTOME INTEGRIN CELL
SURFACE INTERACTIONS

85 Integrin cell surface
interactions

4 0.0471 2.09E-04 4.07E-02

REACTOME PROTEIN
PROTEIN INTERACTIONS AT
SYNAPSES

87 Protein-protein interactions at
synapses

4 0.046 2.28E-04 4.07E-02

REACTOME RNA
POLYMERASE II
TRANSCRIPTION

1374 RNA Polymerase II
Transcription

14 0.0102 2.56E-04 4.11E-02

ness effects (100,101)). As such, we cannot use these meth-
ods without proper transformation. Third, the EA method
had good performance in blind, objective contests of the
CAGI community for predicting the impact of mutations
(49,50). Fourth, it has been useful in molecular and clinical
applications (52,102–104). Fifth, it is untrained rather than
dependent on prior human clinical data (105). Last but not
least, it describes well the overall functional impact and the
organismal fitness outcome (106,107). We exploited the ad-
vantages of EA, a method to score mutations in protein cod-
ing sequences of the human genome, to better annotate the

somatic mutations in cancer patients. Essentially, we used
EA scores from human genome background mutations that
produce a nearly exponential distribution to create simu-
lated controls by random selection of the EA scores from
the distribution of all possible single nucleotide changes in
canonical transcripts of each gene. And we combined the
cancer patients with synthetic controls and labelled them
as 1’s for cases and 0’s for the controls. Here, we developed
EPIMUTESTR, a machine learning pipeline, that takes the
combined cases/controls dataset and identifies the driver
genes in human cancer. We found that EPIMUTESTR ac-
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curately identifies driver genes for all 33 individual cancer
types and across all 33 cancers assessed by the TCGA Pan-
Cancer project, EPIMUTESTR minimizes the false posi-
tive calls and may improve specificity for the purpose of
patient targeted therapeutic drugs. We chose the term epis-
tasis because EPIMUTESTR is based on nearest-neighbor
algorithm and all genes participate in samples classifica-
tion. Technically, when some genes have different EA scores
(lower or higher) than others, this will give additional award
or penalty to the gene’s weight, but the effect size depends
on the distance between genes. Therefore, we believe that
genes interactively affect each other and consequently gene
weight as we have shown in Supplementary Figures S2 and
S4.

An important aspect of our approach is the use of syn-
thetic controls to detect infrequently mutated yet important
cancer driver genes. On the other hand, simulating synthetic
mutations from all possible nucleotide mutations may carry
some risk of false positives. Recent studies revealed nested
cross-validation chooses a more parsimonious set of fea-
tures with fewer false positives (70,108,109). Therefore, we
replicated the analysis with 10 different synthetic controls
and considered the consensus set of genes that co-occurred
in more than half of the replications. However, we note that
the relatively tight error bars in the robustness curves for
six tumor types in Figure 3 suggest that the risk of false
positives with the synthetic control is low and that repli-
cating the analysis with more synthetic controls may not
be always helpful. Thus, we compared the discovered can-
cer genes over the various thresholds for each frequency.
Supplementary Figure S3 indicates the overall performance
of the number of gene frequencies from 10 replications of
synthetic controls in which as the number of gene frequen-
cies go up the number of overlap genes drop. On the other
hand, the low and high thresholds tend to have the low and
high specificity and sensitivity. Therefore, we chose thresh-
old 0.1 based on three reasons: first, a q-value < 0.1 is a stan-
dard threshold for statistical significance; second, a trade-
off between the smaller number of unidentified cancer genes
and the higher number of discovered cancer genes meet at
0.1; and third, the number of discovered cancer genes falls
within the range of the number of genes identified by other
methods (40–42).

Fundamentally, the k nearest neighbor algorithm has two
important steps, first, generating a distance matrix across all
samples, second, classify samples randomly based on the
k nearest neighbor. In step two, all the genes are consid-
ered for classification, thus, we can conclude that k nearest
neighbor considers the polygenic aspect. To show this, we
generated a heatmap of samples by significant genes for the
LUAD cancer type, where each entity refers to EA score
and highlights the significance of the genes and the reason
for selection in Supplementary Figure S3. Thus, given all
missense and truncating somatic mutations for cancer pa-
tients and simulated controls, we were able to consider all
the genes in n-dimensions (n = total number of genes) of
Manhattan space to capture epistasis effect of genes (68,83).
We also compared the EA scores distributions for TP53 as
a tumor suppressor and BRAF as an oncogene in Supple-
mentary Figure S4 to show different cancer drivers may im-
pact cancer in different ways (loss of function or gain of

function). We also have observed the similar impact to the
gene weights as we have seen in Supplementary Figure S1.
And, we noticed that p-values of these two genes in LUAD
and SKCM cancers are subjective, where TP53 is the lead-
ing driver in LUAD (TP53 p-value: 3.06E–137, BRAF p-
value: 1.57E–21) and BRAF is the leading driver in SKCM
(BRAF p-value: 3.23E–168, TP53 p-value: 1.07E–12). Con-
sequently, EPIMUTESTR picks up oncogenes or tumor
suppressor genes subjectively and it highly depends on EA
scores distribution. In addition, in order to test the robust-
ness of the EPIMUTESTR, we reduced the number of sam-
ples by random subsampling iteratively. We iteratively re-
moved 5% of samples by preserving the ratio of cancer
patients and simulated controls in each iteration. Finally,
we used our predefined gold-standard gene list and con-
sidered the overlap genes that were identified in each iter-
ation. This analysis is illustrated in Figure 3 and shows that
EPIMUTESTR is robust even at smaller sample sizes.

Despite the advantages of our approach, this study may
have some limitations. First, machine learning methods are
highly dependent on the input data and because our in-
put data are somatic mutations with synthetic controls (i.e.
incomplete data), the consistency assessments will fail as
we reduce the power by subsampling (Figure 5D). Second,
since we accept all mutations in a gene, it may reduce our
sensitivity due to different pathogenic mutations. Therefore,
in future directions we plan to the use UK Biobank where
there is control data to calculate odds ratio of a gene. Third,
gene weights calculated based on the classification of can-
cer patients against synthetic controls may not order top
genes correctly as we rely on synthetic controls for classi-
fication, and therefore we replicated the analysis with ten
different random controls. Although our approach is de-
signed to work with somatic coding mutations and there
are many factors contribute orthogonal information to the
search for cancer driver genes and the success will arise,
eventually, when each is properly use and then integrated
with the others. Therefore, besides coding mutation scores,
such as from EA, PolyPhen, or SIFT, copy number varia-
tion (30), gene expression (42), methylation (110), etc. can
be used to build a multi-variate model. In the future we do
plan to study performance improvements when integrating
these other sources of data in our model (111).

In summary, EPIMUTESTR improves cancer driver
gene identification where it finds 418 genes with high speci-
ficity (Figure 4B) across 33 different cancer types from the
TCGA project. 168 candidate driver genes are well-known
according to ten recent sources of reported cancer genes.
Most have been identified in other sources of evidence such
as cancer publications in PubMed searches and the Net-
work of Cancer Genes. The remaining genes that are less
studied are enriched in eight pathways related to cancer. Ad-
ditionally, our remaining genes included many genes that
are unidentified by previously reported genetic studies that
are important genes in cancer pathways.

DATA AVAILABILITY

EPIMUTESTR is under MIT license and pub-
licly available in the GitHub repository (https:
//github.com/LichtargeLab/EPIMUTESTR)
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MC3 MAF file is publicly available at (https://gdc.cancer.
gov/about-data/publications/mc3-2017)

An online version of EA scores is available for nonprofit
use at (http://eaction.lichtargelab.org)

DepMap is publicly available at (https://depmap.org/)
20/20+ is publicly available at (https://github.com/

KarchinLab/2020plus)
dNdScv is publicly available at (https://github.com/

im3sanger/dndscv)
DOSE is publicly available at (http://dx.doi.org/10.1093/

bioinformatics/btu684)

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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