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Rapid progress in structural biology and whole-genome
sequencing technology means that, for many protein 
families, structural and evolutionary information are readily
available. Recent developments demonstrate how this
information can be integrated to identify canonical
determinants of protein structure and function. 
Among these determinants, those residues that are on 
protein surfaces are especially likely to form binding sites and
are the logical choice for further mutational analysis 
and drug targeting.
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Abbreviations
ET evolutionary trace
Gαα G protein α subunit
HMM hidden Markov model
IR intracellular hormone receptor
MSA multiple sequence alignment
PDB Protein Data Bank
RGS regulator of G protein signaling
SH Src homology

Introduction
Protein functional sites play a central role in biology.
They include catalytic centers, interfaces with ligands and
conformational switches, and can be defined as clusters of
amino acids whose structural, dynamic and physicochemical
properties directly impact ligand interaction and trans-
formation. Many important applications follow from their
identification, including drug design, engineering protein
mimetics and elucidating molecular pathways through
site-directed mutagenesis [1,2••]. Furthermore, the proper
identification of binding surfaces can lead to protein–protein
association models, for example, by understanding whether
protein oligomers are biologically relevant or simply
crystallization artifacts [3,4], and also by guiding protein
docking [5••]. Finally, convergent evolution and molecular
mimicry in bacterial pathogens [6] and in autoimmune
diseases suggest that functional sites can be viewed as
irreducible modules of biological activity. Their precise
topological description [7] could therefore be useful for
functional annotation. This review discusses sequence- and
structure-based approaches to recognizing functional sites,
and then focuses on emerging methods that explicitly
incorporate evolutionary information.

Sequence variations and function
It has long been recognized that functional sites undergo
fewer mutations during evolution than other parts of a
protein [8,9]. Amino acid differences at functional sites
can be described in terms of sequence conservation
patterns using matrices of position-specific variations,
called profiles [10], or through statistical means, such as
hidden Markov models (HMMs) [11,12]. Both methods
can sensitively detect local sequence motifs, which can be
associated with specific functions and compiled, as, for
example, in the INTERPRO database [13]. Global sequence
homologies can also be identified by these methods or
by the related and even more sensitive PSI-BLAST
search [14,15], thereby suggesting putative functions and
functional sites, by analogy. 

These sequence-based methods are fundamental to the
functional annotation of proteins, but they can be limited
for two reasons. First, many functions involve large
interfacial areas, rather than short local sequence motifs.
Second, functional analogies can be specious, especially
when sequence identity falls below 40%. Under that
threshold, functional differences are increasingly common
[16] and homologs may have unrelated functions, distinct
chemistries and different functional sites [17••,18].
Circumventing these limitations requires careful examination
of a protein structure’s physical features. 

Physical and compositional heterogeneity of
functional sites
Protein–ligand interactions are so diverse that no single
attribute guarantees or precludes a site from being part of
an interface. Geometric and electrostatic complementarity
to ligands are universal features of functional surfaces
[19,20] and, in general, small ligands bind in cavities [21]
and in areas of increased surface roughness [22]. On the
other hand, protein–protein interactions typically involve
large, accessible and mostly planar sites where the solvation
potential, interface propensities and protrusion of residues
cannot be easily distinguished a priori from the rest of the
protein’s surface [23].

This heterogeneity of functional sites is consistent with
their plasticity and with the context dependence of the
functional contributions of their amino acid components. A
review of 2325 alanine mutants in 22 protein–protein
complexes [24] reveals that only a fraction of the residues
that contact a ligand actually contribute to the binding free
energy [25]. Furthermore, the efficacy of some active sites
is allosterically regulated [2••,26] and the site can adapt to
mutations through extensive structural rearrangements of
as much as 3 Å by both mainchain and sidechain atoms
located up to 15 Å away [27]. Thus, the effective functional
site not only includes part of the ligand contact site, but
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also extends beyond it through allosteric interactions, and
the effect of specific mutations depends largely on their
surrounding environment.

Nevertheless, useful generalizations can be made. For
stable protein–protein interactions, binding surfaces are
found to have a lack of charged groups and an excess of
hydrophobic residues, leading to an amino acid composition
intermediate to that of the protein interior and surface [28].
For transient protein–protein interactions, such as those
found among proteins in signaling pathways, the binding
interface does not differ greatly in composition from the
rest of the protein surface. On average, a ‘standard interface’
buries approximately 1600 ± 400 Å2 and contains either
10 ± 5 hydrogen bonds or 2 salt bridges per interface, but
large deviations are also observed [29]. 

In the case of protein–DNA interfaces, lysine and arginine
residues interact electrostatically with the phosphate
DNA backbone, with an average of 1 hydrogen
bond/125 Å2, and there are an equal number of hydrogen
bonds involving water molecules [30,31]. A recent study
using 129 protein–DNA complexes revealed that two out
of three of the direct interactions between amino acids
and nucleotides involve van der Waals contacts, one out
of six involves hydrogen bonds and the remaining one
out of six involves water-mediated bonds [32]. In the
case of protein–RNA interfaces, a study of 32 protein–RNA
complexes by Jones et al. [33] noted the expected
importance of arginines, but found that single aromatic
residues (phenylalanine and tyrosine) are also key factors
in binding. Finally, in a study of protein–carbohydrate
sites (19 protein–sugar complexes), arginine, aspartate and
glutamate are found to play prominent roles, in addition
to aromatic residues [34]. However, the lack of a single
recognition template for these interactions remains a
problem in their identification.

Thus, functional sites are sufficiently unique that their
detailed characterization requires direct mutational
analysis, for example, alanine scanning mutagenesis,
which directly links sequence variation with a functional
consequence. Systematic and exhaustive mutations,
however, are resource-intensive, protein-specific and
critically dependent on assays being available to test
functional differences before and after mutation. An
alternative, embodied by the evolutionary trace (ET)
method [35], is to emulate mutational analysis using the
mutations and functional assays that have already occurred
during evolution, rather than those made in the laboratory. 

Evolutionary tracing 
Theory
ET analysis is predicated on two hypotheses. The first
hypothesis is that functional sites evolve through variations
of a conserved architecture. If so, whereas architecture-
defining residues might be mostly invariant, the residues
responsible for functional specificity could undergo many

substitutions, each associated with a functional variation
and, hence, divergence. A problem in identifying residues
whose variations always correlate with changes in function
is that the functional differences among dozens or even
hundreds of proteins within a family must be known. ET
employs a second hypothesis to address this problem by
postulating that sequence identity trees approximate
functional classifications. This approach is plausible because
proteins with greater sequence identity have diverged
more recently than sequences with lesser similarity, and
therefore have had less time to functionally diverge [35]. 

Method
The input to ET consists of a protein family with divergently
related sequences in a multiple sequence alignment
(MSA) and a related sequence identity tree, which can
be generated using programs such as Accelrys’s PILEUP
(found in the Genetics Computer Group [GCG®]
Wisconsin Package ), CLUSTALW and PHYLIP. ET
then iteratively partitions the protein family into an
increasing number of subgroups delineated by branch
points in the tree (Figure 1), beginning with one group
containing all of the sequences in the family and ending
with each protein being its own subgroup. For example,
the i th trace is done with the family divided into the first
i branches, as shown in Figure 1 for i = 3. Positions in
the MSA that have invariant residues within each of the
subgroups, but for which residue identity varies among
the subgroups are called trace residues (also known as
class-specific residues). The evolutionary rank of a residue
is the minimum number of branches into which the tree
must be divided for it to become a trace residue.
Accordingly, a residue with rank k will be invariant in each
of the first k branches, but variable in at least one of the
first k–1 branches. Importantly, because nodes near the
root of the tree reflect the most basic evolutionary
divergences, residues ranked high (1, 2, 3,…) correlate
with the most fundamental features of the protein. As the
rank increases, class specificity is linked with increasingly
minor evolutionary divergences, until it eventually looses
significance after a given signal-to-noise threshold. The
tree can therefore define a hierarchy of functional
importance among residues in the protein. The final step
in ET is to map the top-ranked residues onto the structure
and then to assess whether they are spatially clustered.
Trace residues that form clusters in the three-dimensional
structure of the protein are likely to define active sites, as
changes in the amino acid composition of these regions are
linked with evolutionary divergence and, hence, functional
specificity [35]. Recent variations on this basic scheme add
quantitative descriptions of residue variability (weighted
evolutionary tracing [36]), use amino acid exchange matrices
to better tolerate variations within branches, utilize better
methods to build trees (ConSurf [37]) and account for gaps
in sequence alignments [38•]. 

Deeper concerns that a tree inadequately accounts for
convergent evolution and for different evolutionary rates at
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different functional sites and in different branches have
spawned related approaches that seek to eliminate it
altogether. Thus, Hannenhalli and Russell [39•] used
experimentally predefined functional subtypes, rather
than a tree, to group sequences and then identified
class-specific residues using HMMs and relative entropy.
Landgraf et al. [40•] further added a variability window
around each residue, defined structurally as the spatially
neighboring amino acids, and then identified important
residues as those whose variations deviate significantly
from the average. Nevertheless, the tree has important
advantages. It conveys simply and transparently the complex
interplay between sequence and function variations. Thus,
once top-ranked residues are identified, their variations
can be tracked along the tree to identify which variations
are the most likely to impart functional specificity to each
different functional group during evolution [2••,41,42]. It
can also be easily modified to test whether a given site is
conserved in any number of subgroups within a protein
family [5••,41] (Figure 2). 

Ultimately, methods that predict functional sites should be
judged along three different lines: do they efficiently
guide mutational, protein engineering and other studies to
the relevant sites of a protein structure; are they statistically
significant; and can they be applied to the proteome at

large? Increasing evidence suggests that ET-based methods
fulfill these criteria.

Guiding experiments to biologically 
relevant sites
Controls
Control studies in SH2, SH3 [35] and nuclear hormone
receptor zinc finger domains [41] show that residues of
increasing evolutionary rank form enlarging structural
clusters that match precisely the structurally determined
ligand interfaces. Then, as the rank increases further,
residues begin to scatter across the protein surface, defining
the signal-to-noise threshold. Comparisons with the
literature show that mutations of the best-ranked residues
eradicate activity, mutations at lesser-ranked residues modulate
it and mutations at the worst-ranked residues do not
change activity, even when they are part of the structural
epitope. Finally, in a striking verification of the fundamental
hypothesis of ET, the top-ranked trace residues from the
zinc finger domains form two groups. The first group
consists of the highest ranked residues. They are nearly
invariant, contact only invariant bases in the DNA
response element and thus appear to define the essential
characteristics of DNA binding. The second group
includes slightly lower ranked residues. These undergo
frequent highly nonconservative substitutions and they
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= Invariant residue (i = 1)
= Class-specific residue (i > 1)

The ET method. (a) All of the sequences in a protein family are aligned
and a tree is generated to illustrate the relatedness of individual family
members. The tree can then be delineated into groups (i)
approximating functional classes (in this case, three classes). For each
class, a consensus sequence is created and these are then compared
to form the ET sequence. Residue positions that are invariant within
each class, but that vary among them are called class-specific or trace
residues (labeled X in the ET sequence, colored red) and those that
are class-specific at rank i = 1 are denoted by amino acid single-letter

code in the ET sequence and colored blue. The number of classes into
which the tree has to be divided for a residue to become class-specific
is called the rank of that residue. Finally, trace residues are mapped
onto the three-dimensional structure of a family member, with clusters
of trace residues indicating a functional site [yellow line in panel (b)].
(b) The process described in (a) can be repeated from rank 1 to N
(N = total number of sequences), so that each residue position is
assigned a rank. Residues with lower numbered ranks are considered
to be more important than those with higher numbered ranks. 



contact variable bases, consistent with a key role in
binding specificity. 

Predictions and confirmations
Bona fide predictions, subsequently followed by experimental
verification, were made for G protein α subunit (Gα)
proteins and for the regulator of G protein signaling (RGS)
proteins that act to increase Gα GTP hydrolysis rates. ET
analysis of the Gα family identified a functional surface,
A1, from which the C-terminal tail of Gα extends [43]. As
this tail had already been linked to receptor specificity, A1
was predicted to be part of the Gα–receptor interface. 108
alanine mutants in this region were constructed and
assayed, showing an overall agreement with the ET
prediction of 68% (sensitivity = 75%, specificity = 65%) [44].
However, the most complete demonstration that ET can
anticipate both mutational and crystallographic analyses
was the RGS study. ET analysis of 42 members of the RGS
family revealed a novel functional surface, R2, located next
to, but distinct from, the interface between the RGS and
Gα. Based on both the pattern of amino acid variation in
R2 among RGS proteins that are enhanced and inhibited
by the G protein effector subunit PDEγ, and the proximity
of R2 to a cluster of class-specific residues in Gα that contains
residues involved in the PDEγ interaction, it was predicted

that the effector would bind the RGS–Gα complex by
straddling both Gα and R2 [42]. Mutagenesis of the RGS
catalytic core domain, based on the ET prediction,
revealed that three residues out of the six selected for
mutagenesis had profound effects on the regulation of
activity by PDEγ. Two of the three residues do not directly
interact with Gα, whereas the third residue contacts the
G protein, indicating that there is some form of allosteric
communication among these residues [2••]. After the
ET-based mutagenesis was completed, the crystal structure
of RGS9–Gi/tα–PDEγ was solved by Slep et al. [45] and
confirmed the predicted position of the PDEγ interaction
site on the RGS domain. 

Statistics and large-scale development
These studies suggest that ET can be an efficient and
powerful tool for understanding protein function if it can
be applied to a significant fraction of the proteome.
Madabushi et al. [38•] addressed this issue by streamlining
input preparation, developing formal statistics to assess the
significance of trace clusters and testing performance on
proteins with diverse folds, structures and evolutionary
history. Input was simplified by treating gaps as an artificial
amino acid type and, as a result, nearly all sequences can
be tolerated (sequence fragments still need to be excluded).
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ET can be used as a functional filter: ‘subgroup analysis’. For protein
families that are large and divergent, ET analysis of the entire family may
miss functional sites that are specific to individual subgroups. In this
example, one large family can be divided into three main subgroups
(a–c). Separate traces of these subgroups reveal some overlapping and
some subgroup-specific functional surfaces (labeled as site 1a, etc.).
Trees from subgroups can then be added together to determine
whether subgroup-specific functional sites are maintained, altered or

abolished, indicating that the groups share very similar functions, slightly
similar functions or no functions, respectively. For example, subgroups a
and b share one functional site (site 2a/part of site 1b), indicating that
this location plays a common role in both. However, site 1a is not
shared by subgroup b, but is shared by subgroup c (a+c), indicating
that, at this location, a and c are more similar than a and b, or b and c.
This process of subgroup analysis is an efficient way to take advantage
of the tree in order to delineate functional sites in a large protein family.



Random distributions of both the number of clusters and
the size of the largest cluster expected if trace residues
arose by chance were generated. These statistics were
then applied to traces of 46 proteins. According to these
criteria, 95% of the traces were found to be significant,
with the largest cluster being significant in 92% of the
proteins (p value ≤ 0.05, each time). Moreover, the largest
cluster of trace residues directly contacted the ligand in 39
of the 40 proteins for which the co-crystal structure was
available. This demonstrates that the spatial clustering of
evolutionarily important residues is a general phenomenon,
consistent with the cooperative nature of residues that
determine structure and function. 

In practice, these results also suggest that ET will identify
functional sites in nearly all protein structures. Similar
findings were found in control studies of methods closely
related to ET. Hannehalli and Russell [39•] used a HMM
and amino acid exchange matrices to correctly assign
subtypes to 91.2% of 2593 sequences from the PFAM
protein family database at a 20% similarity threshold and
to 94% of these proteins at a 30% similarity threshold.
Landgraf et al. [40•] used a three-dimensional residue
clustering analysis, which relies on a structure and a
multiple sequence alignment, to identify binding
interfaces in 35 protein families with four main types of
interactions (protein–DNA/RNA, protein–small ligand and
both stable and transient protein–protein). For sequences
with an E-score (i.e. the number of sequences expected to
be homologous to the query sequence by chance) threshold
of 10–20, 67% of the interfacial residues were identified,
assuming that 10% of the high scores might occur randomly.
Aloy et al. [5••] used a modified version of ET, focusing
only on invariant polar residues, to locate functional sites
in a test set of 86 proteins with ≤30% identity. Using this
method, an identified site with more than 50% overlap
with the known active site was found in 79% of the
proteins, with 15% of the sites overlapping less than 50%
with the known site and 6% having no overlap. Other trace
studies and predictions further attest to the generality of
these methods ([36,46–48]; see also Update).

Future directions
Functional annotation
The ability to combine sequence and structure information
to identify functional sites on a large scale is likely to be
useful for functional annotation. Currently, less than 1% of
annotated sequences in SWISS-PROT reflect experimental
observations. The remaining annotated sequences (about 4%)
rely on homology-based annotation [49]. This is a concern
because homology does not necessarily imply functional
similarity [50] and because incorrectly assigned functions
can easily propagate to other homologs [15]. 

One may address this problem by tracing homologous
protein families separately, as well as together, and then
examining whether they share identical functional surfaces
[5••]. This is a special case of a general strategy to test

whether any two (or i) evolutionary branches of a family
share common functional sites by tracing a subtree of the
entire family that only contains these two (or i) branches,
as shown in Figure 2. For example, in DNA-binding
domains from intracellular hormone receptors (IRs), an
ET restricted to steroid receptors reveals a dimerization
interface that is typical of that subgroup and that is not
observed when all IRs are traced jointly. This interface
vanishes whenever a nonsteroid branch is added back to
the steroid family, except in the case of all-trans retinoic
acid IR (RAR), which must therefore use the steroid
dimerization interface for some aspect of its function. A
similar strategy has been used to identify similarities and
differences between G-protein-coupled receptors from
class A and class B [1]. A large-scale implementation of this
approach was recently shown to be 94% accurate when
tested in 88 proteins and confirms that this is a viable
strategy to identify which homologs are functionally
analogous [5••]. Importantly, although a shared functional
site does not imply a common function, it is easy to further
compare the sidechains of top-ranked residues to assess
whether they are consistent with a conserved function.

Protein–protein interactions
Quaternary structure modeling is another area in which the
identification of functional interfaces is useful. For example,
the identification of a probable interface led to a model for
the association of the G protein and its receptor [43] that is
consistent with mutational analysis [44]. Additionally, a
model for the RGS–Gα–PDEγ heterotrimer predicted by
a trace of the RGS family [42] was consistent with the
actual crystallographic structure [2••,45]. Aloy et al. [5••] have
now demonstrated on a large scale that docking solutions
are achieved faster and more accurately when the binding
partner is targeted towards a site of evolutionary importance.
Yet another viable possible application is to determine
whether an observed crystallographic interface is functionally
relevant or merely the result of crystallization [3,4].

Conclusions
Functional sites are key targets for manipulating protein
activity and cellular behavior, yet they remain difficult to
identify because of their compositional and structural
heterogeneity. This reflects a multiplicity of possible
ligands, the context dependence of sidechain contributions
to activity and the allosteric regulation of active sites.
Thus, functional sites are sufficiently unique that they
cannot be characterized statistically as accurately as with
protein-specific mutational analysis. One goal of ET,
therefore, is to combine the precision of mutational analysis
with the scalability of a computational approach. 

ET correlates sequence variations with functional
divergence, using an evolutionary tree to approximate
functional groupings. In this view, every pairwise variation
between sequences is a virtual mutation and each node in
the tree is a virtual assay that functionally distinguishes
between proteins in each of the daughter branches. Thus,

Evolutionary predictions of binding surfaces and interactions Lichtarge and Sowa    25



it becomes clear that ET is a computational filter that sifts
through thousands of virtual mutations (all of which yield
biologically active proteins) using dozens of virtual assays
to identify sequence positions whose mutation leads to a
nondeleterious change in function. Although similar to
mutational analysis, ET benefits from more mutations and
far more assays than are typically available in the laboratory.
The sheer number of these evolutionary mutations and
assays makes up for the approximate character of the
evolutionary tree and explains ET’s many applications:
targeting experiments to the relevant sites of a protein;
modeling quaternary structure; and functional annotation.
On the other hand, a limitation is that, in multifunctional
proteins, it remains a challenge to deconvolute which
function a given residue contributes to most, although
subgroup analysis may be helpful in this regard. 

Already, ET has been shown to identify statistically
significant and functionally relevant regions in more
than 80% of the proteins tested. As ever more sequences and
structures are solved through large-scale sequencing and
structural genomics efforts, ET-based approaches should prove
increasingly useful to integrate sequence, structure and
function information for a large fraction of the proteome.

Update
Dean et al. [51•] have recently employed the ET method
to analyze over 700 G-protein-coupled receptors (GPCRs),
using Monte Carlo techniques to assess the significance
of ET-identified residue clusters. For each of the eight
GPCR families traced, trace residues cluster in a nonrandom
manner and were generally found in helices 5 and 6 (proposed
to be involved with receptor dimerization), and in helices
2 and 3 (a novel functional site).
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