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In order to identify the amino acids that determine protein structure and
function it is useful to rank them by their relative importance. Previous
approaches belong to two groups; those that rely on statistical inference,
and those that focus on phylogenetic analysis. Here, we introduce a class
of hybrid methods that combine evolutionary and entropic information
from multiple sequence alignments. A detailed analysis in insulin recep-
tor kinase domain and tests on proteins that are well-characterized experi-
mentally show the hybrids’ greater robustness with respect to the input
choice of sequences, as well as improved sensitivity and specificity of pre-
diction. This is a further step toward proteome scale analysis of protein
structure and function.
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Introduction

When doing protein mutation studies, it is help-
ful to have an estimate of the relative importance
of residues as a guide. In this way, priority can be
given to the residues more likely to play a critical
role in the protein function or structure. Here, we
re-examine how to rank residues by importance,
starting with a set of homologous sequences.

All of the alignment or evolutionary residue-
scoring methods assume that the importance of a
residue is reflected in its evolutionary conserva-
tion: the more important the residue, the sooner it
becomes fixed in different evolutionary branches,
and the more divergent are the branches between
which it does vary. (As a working definition of
“important residue”, we might take “the residue
that cannot be mutated without measurably affect-
ing the protein structure or function.”) There are
various approaches to turning this observation
into a quantitative prediction of relative residue
importance: scoring strict conservation, property
conservation, or entropy of a position, or, more
elaborately, scoring conservation in related families
(even if not across the families).

In one of the earliest attempts to quantify the
conservation of a residue at certain alignment pos-

ition, Zvelebil et al. converted the count of residues
with a certain property (hydrophobicity, size, etc.)
into a property called conservation number, which
enabled them to distinguish poorly conserved
loop regions from the rest of the protein structure.1

For the current progress in this line of thought, see
Valdar.2

Casari et al. proposed an interesting method in
their 1995 work: consider the whole sequence as a
vector in number-of-residue-types times length-
dimensional space, and think of the alignment as
a matrix of such vectors.3 Its eigenvectors should
then carry the information about residue prefer-
ence for each subfamily represented in the align-
ment. In that way, the tree information is
recovered from the analysis, rather than being its
input. The information-theoretic school likes to
place the root of its genealogical tree straight at
the historical work of Shannon & Weaver, where
the entropy of a finite state system was reinter-
preted as a measure of its information content.4

With the advance of computational methods in
genetics, the idea resurfaced in connection with
the information content and thermodynamics of
DNA-binding sites.5,6 In 1991 Shenkin et al. used
entropy as a robust measure of variability of pos-
itions in immunoglobulin sequence, and noted
that high variability of a position can be a result
of its evolutionary neutrality.7 More recently,
entropy-based measures of position conservation
have been used for systematic computational
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analysis of conservation profile in multiple
sequence alignment,8,9 and the approach was also
elegantly extended to detect correlated mutations
in a sequence.10,11 Mirny & Shakhnovich12 as well
as Hannenhalli & Russell13 introduced the notion
of summing or averaging the site entropy over
several related protein groups, but stopped short
of iteratively applying this approach to the hier-
archical division of sequences into groups induced
by evolutionary tree, the idea that we propose
here.

In a parallel and independent development,
Lichtarge et al.,14 as well as Livingstone & Barton,15

pointed out that low variability is not equivalent to
the conservation of a residue within a subgroup
(or a subtree), and that the knowledge of such
within-group conservation can be used success-
fully in estimation of the residue importance. A
similar observation was made by Ptitsyn in the
context of structurally important residues.16 While
Livingston & Barton incorporated and built onto
the work of Zvelebil et al., Lichtarge et al. took an
all-or-none approach in considering the within-
group conservation, but pointed out how to
include the tree information in a systematic, itera-
tive way. The method was named evolutionary
trace (ET), and has since been shown capable of
detecting protein interaction sites and directing
protein mutation studies.17 – 20 The present work
grew out of the effort to make the ET more robust
against deviations from the ideal family-tree pic-
ture, occurring in the actual protein evolution
(and database-dependent research).

A comparative study of various methods men-
tioned, in terms of their capability to rank the resi-
dues, was, to the best of our knowledge, never
performed (see del Sol Mesa et al.11 for comparison
of several methods’ ability to pick residues physi-
cally close to functionally important residues). In
good part, the reason is that it is impossible to
obtain from the experiment equivalent and inde-
pendent information, an experimental yardstick
against which to measure the performance of
various theoretical approaches. This would involve
mutation of every single residue in the protein, or
at least sizable portion thereof, presently not a
feasible option. As an alternative, we construct by
literature search a tentative key residue set for
several well-investigated proteins, a task in which
we are greatly assisted by Protein Mutant
Database.21 We then estimate the quality of a
method by its capability to rank the members of
the key set highly. In other words, taking this set
as a “gold standard”, we study the sensitivity–
specificity performance of a method. The methods
we focus on in this work are entropy, ET, and two
hybrid methods. We propose a general way to
construct a hybrid, illustrate the use of these
methods using insulin receptor kinase domains as
an example, and find that combinations of ET and
entropic approaches are more robust against small
irregularities in the input, and have increased
prediction sensitivity and specificity.

Theory

In this section we want to lay out the framework
for incorporating entropy into a tree-based residue
ranking system (or vice versa). To this purpose, we
need to define some terminology: node ordering
in a binary tree, and hierarchical division of leaves

Figure 1. Node ordering and hierarchical division of
leaves into groups. (a) Node n ¼ 1 corresponds to all
leaves belonging to the same group; (b) n ¼ 2 to two
groups; and (c) n ¼ 5 to five groups.
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into groups induced by the tree. We express the
existing methods (ET and entropy) in these terms,
and review their complementary strengths. Next,
we propose a straightforward combination of
the two, and point out a way to think about this
unification in quite general terms.

In the alignment-based trees the number of
sequences in the multiple sequence alignment, N,
equals the number of leaves in the tree. The nodes
in the tree can then be numbered iteratively in an
ordered way, following the UPGMA method:22

starting with n ¼ N leaf nodes, replace the two
nearest nodes by a new one. Assign to the new
node the number n 2 1, decrease n by 1, and repeat
the iteration. Notice that in this way the nodes
close to the leaf level get assigned big numbers,
while the root is labeled as node n ¼ 1: Implicit in
this numbering scheme is the hierarchical division
of leaves into groups; at each step in the iteration
corresponding to the assignment of node number
n, the leaf set is divided into n groups (Figure 1).
Each group is labeled by a number g ¼ 1,…,n, the
ordering of which is unimportant.

With the above conventions in mind, we can

express the ET score for the residue at position i as
follows:

ri ¼ 1 þ
XN21

n¼1

£
0 if position i conserved within each group g

1 otherwise

(

ð1Þ

(1 is here for historical reasons.) In other words, the
summation stops at a division into groups such
that the position i is conserved within each group.
(Any further subdivision preserves that property.)
Assigning ri to each residue leads to a relative
ranking scheme: given any two residues, the one
with smaller ri is considered more important. It is
the ordering of alignment positions according to ri

that matters, rather than the values of ri them-
selves. This is the property shared by all the
methods we discuss.

In the approach relying directly on the entropy
of each alignment column, each position is

Figure 2. Conservation estimate
using information entropy of a
column versus evolutionary trace:
the entropy method sees no dif-
ference between these two cases.

Figure 3. Conservation estimate
using information entropy of a
column versus evolutionary trace:
to the evolutionary trace the
two columns appear equally
unimportant.
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assigned the information entropy:

si ¼ 2
X20

a¼1

fia ln fia ð2Þ

and ranked accordingly. Here, fia stands for the
frequency of the appearance of the amino acid of
type a within the column i: (Contribution to the
sum from the amino acid types that are not repre-

sented in the column is to be understood as 0.)
The frequency is simply the count of times an
amino acid type appears within a column, divided
by the length of the column. The entropy can be
thought of as a score that is assigned exclusively
to n ¼ 1 group in our tree-induced division into
groups. An important property of this quantity is
that it is equal to zero when the column is com-
pletely conserved, and maximal when every
amino acid type is equally represented. Because of
that, the best ranking positions are again those
with the smallest si: These two methods may give
different but complementary results, as we illus-
trate in the two examples in Figures 2 and 3. In
both, a hypothetical column from an alignment is
shown, together with the evolutionary tree for
the proteins that the whole sequences belong to.
The entropy cannot distinguish between the two
columns in Figure 2, while the ET correctly recog-
nizes that the column on the left can be split into
two groups, such that this position is conserved
within each.

In the opposite case, both columns in Figure 3
appear equally unimportant to ET, because some-
where close to the leaf level the type I gets aligned
with A (so the sum in the expression for ri,
equation (1) does not stop until the leaf level is
reached). The entropy, on the other hand, will be
sensitive to the fact that the left column is almost
conserved, while the one on the right is con-
vincingly not conserved.

To get the advantage of both methods, it is
straightforward to combine them into an
expression for real-valued score:

ri ¼ 1 þ
XN21

n¼1

1

n

Xn

g¼1

2
X20

a¼1

f
g
ia ln f

g
ia

 !
ð3Þ

Figure 4. A look at the alignment columns with
increasing resolution. The column on the right shows
persistent variability in ever smaller groups of
sequences. Equation (4) will assign a higher score to
that column than to that on the left.

Figure 5. The path from the root to the query protein.
Figure 6. A map of key positions in the insulin recep-

tor kinase. The structure: PDB entry 1irk.
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where f
g
ia stands for the frequency of the appear-

ance of the amino acid of type a within the group
g: In what follows, we refer to i as real-valued
(evolutionary) trace score (and, for distinction, the
method defined by equation (1) is called integer-
valued ET).

This expression can be viewed as an extension of
the ET method: a group g contributes 0 to the
score if the residue at position i is conserved
within the group, but it can contribute any real
value between 0 and ln 20 (maximum entropy
for the system with 20 amino acid types) if
the position is not conserved. Alternatively, the
expression represents a series of tree-based correc-
tions to the information entropy score si (which
is recovered if we keep only the n ¼ 1 term). 1=n
factors out the dependence on the number of
groups.

In writing down the expression for real-valued
score i (equation (3)) we implicitly assumed that
all groups of sequences at all tree subdivisions are
equally important. However, this is an ideal case,
which might not be true in practice: the groups
containing evolutionarily distant sequences may
carry information of less relevance to the particular
protein we are aiming to analyze. This leads to
generalization of equation (3):

Ri ¼ 1 þ
XN21

n¼1

wnodeðnÞ
Xn

g¼1

wgroupðgÞ

� 2
X20

a¼1

f
g
ia ln f

g
ia

 !
ð4Þ

where wnodeðnÞ and wgroupðgÞ are weights assigned
to a node and a group, respectively. Taking
wnodeðnÞ ¼ 1=n and wgroupðgÞ ¼ 1, we recover the
expression for the real-valued ET i: The entropy
corresponds to wnodeðnÞ ¼ 1, if n ¼ 1 and 0 other-
wise, and wgroupðgÞ ¼ 1:

This quantity is a mathematical translation of the
observation that some positions remain variable no

matter how fine the resolution at which we observe
them, while some positions, overall variable, are
seen as conserved as soon as we limit our consider-
ation to the part of alignment corresponding to
a single (sub)family. For illustration, we turn to
Figure 4. It is a graphical representation of the
alignment used in the analysis of P21Ras protein
(1ctq in subsection the method comparison). The
lines represent sequences, and the columns rep-
resent the alignment columns. Different amino
acid types are assigned a different color. By
increasing the resolution in the column on the left,
we soon find ourselves looking at the stretches of
the column with the same amino acid type. This
column corresponds to the position in the protein
sequence that is evolutionarily privileged and con-
served within several large groups of sequences.
On the contrary, in the column on the right, even
under the twofold increase in the resolution, we
still see a lot of variability; this position is clearly
not under strong evolutionary pressure. Even
though the number of types of amino acids appear-
ing in both columns might be comparable, it is the
fine-grained variability in the column on the right
that makes the difference. Equation (4) attempts to

Figure 7. Success of the four methods in locating the key residues on insulin receptor kinase domain (1irk) using
the raw sequence selection. (a) Column entropy; (b) integer-valued evolutionary trace; (c) zoom; and (d) real-valued
evolutionary trace. The term coverage refers to the percentage of the residues selected together with the residues of
interest (shown in spacefill representation). The residues colored yellow or bright red are detected as important with
high specificity.

Figure 8. Sensitivity versus specificity of prediction for
the four methods using the raw sequence selection.
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capture that notion by assigning that column a
higher number (the higher values signaling less
conservation and, by implication, less importance
for the protein).

As a further illustration of the flexibility of this
formulation, we introduce yet another scoring
method that we call zoom, for reasons to be
explained shortly. We use the re-weighting free-
dom to assign bigger weight to the part of the tree
that contains the protein of interest. If the purpose
of the analysis is to locate key residues in one par-
ticular sequence, we might focus on the part of
the tree containing the path from the root to the
leaf representing our protein (Figure 5):

wnodeðnÞ ¼
1 if n on the path to the query protein

0 otherwise

(

ð5Þ

Thus, to the nodes 1, 2 and 5 in Figure 5 we might
assign the weight of 1, and the weight of 0 to all
remaining nodes in the tree. The sum in over n in
equation (4) would be limited, in this example, to
the terms corresponding to n ¼ 1, 2, 5. Each node
remaining in the sum implies division of the
sequence set into n ¼ 1, 2, 5 groups. To fulfil our

program of focusing on the part of the tree tracing
the evolution of one particular protein, we choose
to assign weight to each group decreasing with its
distance from the group containing our protein.
This ensures that information from the lineage
leading directly to our protein contributes more
than the information from the neighboring tree
branches.

One possibility is the weight with Gaussian fall-
off:

wgroupðgÞ ¼ e2d2
g=d2

0 ð6Þ

with dg the distance between the group g and
the group containing the target protein, and d0 the
parameter that determines the sharpness of the
falloff. In its most extreme version, the group
weight is 1 only if the group contains the target
protein:

wnodeðnÞ ¼
1 if g contains to the query protein

0 otherwiswe

(

ð7Þ

This choice of weighting leads to the sum in
equation (4) over only the terms that refer to the
ever narrower group of sequences containing the

Figure 9. The same as Figure 7 using the pruned selection of sequences.

Figure 10. Comparison of the performance of the real-
valued evolutionary trace on the two (raw and pruned)
sequence selections: the pruned selection lacks the infor-
mation needed to achieve the maximum specificity.

Figure 11. Specificity and error rate as a function of
coverage for the real-valued evolutionary trace.
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target protein. That is why we choose the short-
hand name zoom. (If we replace entropy with
absolute conservation requirement, as in equation
(1), and keep this particular choice of weight, we
effectively recover a method used by Aloy et al. in
their 2001 study.23) Here, we present the results
obtained by using the weight given in equation
(6); that is, we do take the neighboring branches
into account, but with a small relative weight. The
motivation for this choice of wgroupðgÞ lies in the
observation that the rates of mutation in protein
residues may vary from one position to another
and, for the same position, from one (sub)family
to the next (see, for example, Patthy24). In the most

extreme case, a residue may lose its function com-
pletely in one family, and there its evolutionary
constraints are lifted. This position is then free to
vary within one family, but not necessarily in
another. If we rely too heavily on the neighboring
family information, we might lose track of the
residue’s importance in our target protein

Results and Discussion

Case study: insulin receptor kinase

To illustrate the ideas laid out in the previous

 

  

 

 

    

Figure 12. Sensitivity as a function of specificity for real-valued trace (red, continuous line), zoom (pink, dotted line),
and plain entropy (blue, broken line) methods for scoring relative residue importance.

Table 1. The number of cases each method outperforms the others, according to the four measures discussed in the text

Raw Pruned

Input set residue scoring method rvET Zoom Entropy ivET rvET Zoom Entropy ivET

Max. A 3 3 1 0 0 0 0 1
Min. d 3 0 2 0 0 1 0 2
Max. z 4 1 1 0 1 0 0 2
Max. SHMS 2 3 0 0 0 1 1 2

A is maximum area under the specificity–sensitivity curve, d is the distance of closest approach to the (1,1) point on the specificity–
sensitivity graph, z is the z-score of the key set overlap with respect to hypergeometric distribution, and SHMS is the specificity at half
maximum sensitivity.
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section, we look more closely at one particular
case: insulin receptor kinase domain. This protein
is well studied, and in our analysis we rely on the
work by Hubbard.25

Insulin receptors are transmembrane proteins
that bind the insulin hormone. The binding leads
to autophosphorylation of tyrosine residues in
the activation loop of the protein. This results in
enhancement of catalytic activity and creation of
binding sites for downstream signaling proteins.
We focus on the kinase domain of this protein. Its
structure and residue enumeration can be found
in the Protein Data Bank26 under the code 1irk.
The four key parts of the 1irk machinery are (i)
the residues involved in ATP binding (red in
Figure 6, the residues flanking ATP are colored
pink; the ATP molecule itself is not included),
(ii) active site (peptide-binding site; green),
(iii) rotational pivot points and other residues
involved in lobe closure (orange), which are
important in conformational change between
inactive and phosphorylated state, and (iv) acti-
vation loop (blue), which occupies the ATP-bind-
ing site in the inactive form with the three key
tyrosine residues involved in autophosphorylation
highlighted (cyan). The residues singled out by

Hubbard25 for their importance are shown in the
spacefill representation (the complete list of these
residues can be found in Materials and Methods).
The rest of the protein is represented by the
backbone.

We will suppose no prior knowledge about the
protein function and compare the capability of the
four methods to locate the key residues without
incurring too many “false positives.”

The starting point of the investigation is retrieval
of sequences from the database: we accept all
sequences from the NCBI Entrez non-redundant
database with sufficient similarity to the 1irk
sequence (in practical terms: with BLAST27

E-value smaller than 0.05; this is the “raw” data-
base return). This set of 304 sequences consists of
kinases of very diverse provenance: insulin and
insulin-like receptors, assorted growth factors,
viral sequences, and gene products are all rep-
resented. Some of the sequences deposited in the
database are mutants, and some are represented
only by a fragment. The mutations (introduced in
the laboratory or appearing in a viral version of
the protein) will skew the distribution of the
amino acid types appearing in certain position in
the wild-type protein. The fragments, on the other

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

    

Figure 13. Hypergeometric z-score for the epitope overlap as a function of specificity. Overlap refers to the overlap of
the residue selection with the set of the residues experimentally determined to be of critical importance for the protein.
The coloring scheme is the same as in Figure 12.
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hand, will introduce false gaps, typically at both
ends of the sequence. In this work, the gaps are
treated as the 21st amino acid, so their impact is
comparable to that of the mutants.

The integer-valued ET cannot handle such noisy
input, and the alignment has to be pruned of the
undesirable sequences. In doing this, we follow
the automated protocol, described in Materials
and Methods.

Once the alignment is available, we use one of
the methods to create the sorted list of residues,
according to their relative importance, the most
important residues first.

In Figures 7 and 9 we reproduce the residues
shown in Figure 6, but the coloring scheme now
reflects the placement of each residue on the
importance list. The placement is expressed in
terms of coverage: the percentage of protein resi-
dues found equally high or higher on the list. In
particular, the residues shown in yellow appear
among the top 5% of the residues. The residues
shown in black and various shades of gray appear
at coverage of at least 30%, which is not a very
informative result. The residues appearing
between 5% and 30% of coverage are shown in
red, the lighter colors corresponding to smaller
coverage, and therefore to a more specific result.

The panels in Figure 7 show the results on the
raw sequence selection, using (a) column entropy,

(b) integer-valued ET, (c) zoom, and (d) real-valued
ET. The column entropy successfully places most
of the residues involving the proper functioning of
the protein high on the list. The integer-valued
trace is not expected to work in this case: the raw
alignment abounds in cases like that depicted
schematically in Figure 3 (the role of I in that
Figure is frequently played by a gap), which breaks
down the model within which the integer-valued
ET works. The zoom and the real-valued method
improve on the prediction using entropy, by
moving several residues from the activation loop
and the ATP-binding site to smaller percentage bin.

The improvement can be made more obvious in
combined sensitivity versus specificity diagram for
all four methods (Figure 8). Sensitivity is the per-
centage of key residues (as given by Hubbard25)
that is found among the top n residues on the list,
and specificity is the percentage of residues that
are not singled out as important, and that can be
found below the nth position. Each point on the
graph is the specificity–sensitivity pair for one par-
ticular choice of n (see also discussion in the sub-
section the method comparison). For almost any
choice of n (the exception being of marginal size),
the zoom and the real-valued ET top the entropy
in both sensitivity and specificity.

What is the practical implication of this result?
The numerical values in Figure 8 can be restated

 

 

  

 

 

 

 

    

Figure 14. Clustering weight z-score as a function of specificity. The coloring scheme is the same as in Figure 12.
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as follows: suppose we want to do a mutation
study on 1irk. By picking from the list created by
the real-valued ET the top 2% of residues, which
can at the same time be mapped onto the 1irk
structure, we have selected six residues: E1047,
H1130, N1137, G1082, R1131, and D1132. Five of
them belong to the set of 38 residues pointed out
by Hubbard,25 i.e. we have detected 13% (5/38) of
the important residues, with 17% (1/6) error rate.
Even this, supposedly false positive, residue,
H1130, might merit consideration: it is a highly
conserved histidine residue, part of a catalytic
loop, but not discussed explicitly in the reference
work. At 3% coverage we have selected nine resi-
dues, seven important and two not, which equals
specificity of 19% and error rate (“false alarm
rate”) of 22%. These two percentages climb to 26%
and 33%, respectively, when 5% of residues are
selected. But after this point the error rate starts
growing much faster than the specificity (Figure
11); at 10% coverage we have discovered 32% of
the key residues, but 60% of our guesses are false
positives. The best trade-off between the two quan-
tities is achieved for coverages smaller than or
close to 5%. The residues that we pick at this point

are residues belonging to the active site (R1131,
D1132, R1136 and N1137), the ATP-binding site
residues (K1030, D1150 and F1151), and the other
protein kinase conserved residues (E1047 and
G1082). In all, 40% of our selection is outside the
set selected by Hubbard (H1130, A1028, L1123,
A1134, M1120 and G1064).25 Doing mutation
studies on these residues is possibly a misplaced
effort, but some of them merit further consider-
ation: H1130, mentioned earlier; M1120, which is
methionine everywhere except in a group of seven-
less homologues from Drosophila and Anopheles,
and certain mammalian and avian oncogenes
where it is quite convincingly aligned with a
cysteine residue, and which is within 4 Å from the
catalytic site; and G1064, conserved in almost all
sequences, possibly of structural importance. Selec-
tion of the top 23% of residues results in detection
of 50% of key residues, with a false positive error
of 72%. For comparison, at the same coverage
(23%), the column entropy finds 42% of the high-
lighted residues, with 77% of selected residues
being false positives.

On the pruned selection of sequences, all
methods perform comparably well (Figure 9). The

 

  

 

 

    

Figure 15. Comparison of performance: real-valued evolutionary trace on the raw sequence set, and integer-valued
evolutionary trace on the pruned sequence set. For the protein set description, see Materials and Methods.
Sensitivity–specificity curve.
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success rate for the real-valued trace at 23% cover-
age is still 50%, with the error rate slightly
decreased (70%). The other three methods perform
somewhat worse in both indicators. The main
difference, however, is that now the lowest cover-
age equals 7% (all the conserved residues being
tied at the top of the list; which holds for the
whole family of methods we are discussing): 41%
of these residues are not in the selected set. The
overall result of reducing the number of sequences
is a disproportionate loss of specificity, compared
with the gain in sensitivity. This is not surprising;
we discard potentially useful information with
each sequence. This result is shown also in Figure
10: the two sensitivity–specificity curves (for the
real-valued ET) for the two sequence selection
methods almost match, the main difference
appearing in the lower right corner (high speci-
ficity) for which the analysis on the pruned
sequence set lacks the data.

Multi-protein comparison of methods

To compare the performance of different
methods, we interpret the ranked list of residues
produced by each as a set of predictions of the

most important residues. Thus, the x topmost
residues constitute a predicted set of important
residues of size x. The larger x, the greater our
chance of selecting all of the important residues in
the protein, but at the same time, the greater x
increases our chance of incurring an excess bag-
gage of false positives. This is expressed in a more
orderly manner by using quantities termed sensi-
tivity and specificity. The sensitivity is defined as
the ratio of the number of important residues that
our method finds correctly to the known total
number of important residues (true identified
positive/actual positive), while specificity is the
number of unimportant residues predicted by the
method divided by the number of residues known
not to be important (true identified negative/actual
negative). In the ideal case, we would be able to
pick all of the important residues, and only the
important residues; in this case both sensitivity
and specificity would be equal to 1.

It is important to understand that we do not
really know what the actual set of true positives
is. As our best guess about the position of the key
residues, we take the set of residues for which an
importance indication can be found in the litera-
ture (as the importance indication we take a study

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

    

Figure 16. Hypergeometric z-score, geometric epitope: the same as Figure 18: hypergeometric z-score. “Epitope”
refers to geometric epitope determined by closeness to the ligand.
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showing significant structural, functional or health
impact of the residue mutation; see Materials and
Methods). Our choice of nine test-case proteins
was dictated precisely by the possibility of finding
a reasonable number of critical residues in the
literature (see Materials and Methods).

With this in mind, we compare the specificity–
sensitivity curves for the entropy (the blue line in
Figure 12), the real-valued ET (red) and the zoom
methods (pink). In each case, we start from the
same multiple sequence alignment, and construct
the ranked list of residues using each of the
methods. For each selection of the x topmost resi-
dues, we calculate the associated sensitivity and
specificity, and taking the two as point coordinates
we plot the point on a graph. We start somewhere
close to (1,0) point on the graph; our first selection
of x residues is expected to have small sensitivity,
but cannot degrade significantly the specificity
(which then stays close to the value of 1). As we
increase the number x, the sensitivity should grow
faster than the specificity drops. Somewhere in
this sequence of predictions we would like to get
as close as possible to the (1,1) point in the graph,
indicating that we have made the most of both
sensitivity and specificity. Once the specificity
becomes degraded seriously (that is, once we have

included in our selection too many false positives),
the predictions start losing their importance; the
practical value of a method is reflected in its
behavior on the right-hand side of the graph.

The sequence sets on which we base the predic-
tions in this case were obtained by doing a simple
BLAST search (see Materials and Methods) without
further sequence selection (“pruning”, colloqui-
ally). Integer-valued ET was not designed to cope
with such a “raw” selection of sequences, and we
discuss its predictions below. The two hybrid
methods obviously perform at least as well as the
entropy, and usually better (see Table 1).

There are cases like 1ppbH in Figure 12 when no
method performs convincingly well. We must be
aware that they are all subject to noise in the
input: the sequence selection is a sampler of data
available in the database, as much as of our ability
to select them smartly. Similarly, the set of true
positives is a reflection of our semi-automatic way
of gathering information; a “key” residue that
scores in the lowest percentile using any method
is somewhat suspect. Finally, the reference
mutations, although the best data available, still
may give only a partial picture of the true import-
ance of residues.

The statistical significance of the results in

 

 

  

 

 

 

 

    

Figure 17. Similar to Figure 18: clustering z-score versus specificity.
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Figure 12 can be made clearer by comparing them
with the prediction success one would obtain by
picking the residues at random. The probability
distribution for xc correct guesses from the
selection of x, given the size of the protein and the
size of the key residue set, is the hypergeometric
distribution. The expressions for the average and
the standard deviation for that distribution are
well-known quantities,28 so we can calculate the
z-score for our findings, where:

z-score ¼ ðxc 2 kxclÞ=x

The results are shown in Figure 13. The x-axis is
again the specificity, to enable direct comparison
with Figure 12. They reinforce our finding that
hybrid methods outperform the entropy in the
sense that the results, which are better than the
random average by two to six standard deviations,
comfortably top the entropy.

A possible measure of quality of prediction,
completely independent of the epitope knowledge,
is the on-structure clustering of the residue
selection.29,30 It is believed that the important pro-
tein residues tend to make non-random clusters

when mapped on the three-dimensional structure
of the folded protein. The quantity we use to
measure this effect is termed selection clustering
weight:30

w ¼
XL

i,j

SðiÞSðjÞAði,jÞðj 2 iÞ ð8Þ

where L is the length of the peptide chain, i,j ¼
1,…,L,S is the selection function, which assigns 1
to selected residues, and 0 otherwise (remember
we are selecting x out of possible L residues), and
A is the adjacency matrix: Aði,jÞ ¼ 1 if the residues
i and j are in contact on the folded chain, and 0
otherwise. We again compare this quantity with
the average30 in the case of random choice of resi-
dues, and show the associated z-score (Figure 14).
The x-axis is again the specificity. Perhaps unex-
pectedly, the residues selected by entropy cluster
at least as well as those obtained by using the
alternative scoring schemes. Nevertheless, in all
of the cases, the high z-scores assure us of the
non-randomness of our prediction.

Figure 18. The analogue of Figure
12, this time with the “pruned”
input set of sequences. The results
for the integer-valued evolutionary
trace: green broken line.
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To prune or not to prune?

To perform our analysis (using any of the
methods) we have to make an initial selection of
sequences. Needless to say, we cannot start with a
random selection, but rather with one that samples
a protein family tree fairly. Usually, a database
search with some reasonable homology cutoff will
satisfy this first requirement. The input sequence
set may be further reduced using some rejection
criterion.

In particular, the integer-valued ET was not
designed to work with raw return of a database
search. Inconsistencies in the sequence selection,
or isolated cases of atypical mutations, sequence
fragments, and isoforms can degrade the quality
of the (integer-valued) ET prediction significantly.
To compare the integer-valued ET with the rest of
the methods we must remove from the alignment
various impostor sequences, the process that we
refer to as pruning.

The power of the real-valued ET lies in the fact
that we are at all able to discuss the possibility of
not pruning the input set. To further illustrate the
point, we resort to a protein set used previously

by this group,31 the set consisting of more
proteins then our central test set, but with a some-
what less satisfactory choice of important
residues, determined by their spatial proximity to
the ligand (that information was available in each
protein’s PDB26 file). The raw sequence set was
obtained by doing a database search with a certain
similarity cutoff, while the pruned set was
obtained by visual inspection of the multiple
sequence alignment and removal of sequences
that struck the operator as being out of place,
resulting in the selection used by Yao et al.31 As is
notable in Figures 18–20, while this method may
lead to an improved prediction (cf. 1bdo), in many
cases it is not so.

Turning back to our original data set, the ana-
logues of Figures 12–14 for the pruned input set
of sequences are given in Figures 15–17. The pre-
diction can in this case be improved, as demon-
strated by the cases of 1bkx and 1fjmA proteins
(Figure 15), but the loss of information at the
input may result in the loss of specificity, as can
be seen by comparing the results for 1atnA,
1hzxA, 1a22B, 1bkX, and 1fjmA in Figures 12 and
15. There is obviously a trade-off involved; when

Figure 19. The analogue of Figure
13, on the pruned input set of
sequences. The results for the
integer-valued evolutionary trace:
green broken line.
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to stop the pruning may have to be decided on an
individual basis.

What is the overall gain in using the
hybrid methods?

To make that estimate we need some kind of a
“measure of a measure.” We use four measures:
the area under the specificity–sensitivity curve
(which we hope to be as big and as close to 1 as
possible; A in Figure 21); the specificity at the
point where half of the maximum sensitivity is
achieved (SHMS); the distance of closest approach
to the (1,1) point in the specificity–sensitivity
diagram (which we hope to be as close to 0 as
possible; d in Figure 21) and, finally, the maximum
achieved z-score under comparison with the
hypergeometric distribution. While the area under
the specificity–sensitivity curve measures the
overall performance of a method, SHMS indicates
its average performance, and the last two quan-
tities refer to its single best performance point.

Currently, we are not able to construct the test
set of the size allowing for the statistical analysis

of our findings (see Materials and Methods), but
the breakdown for our small test set is given in
Table 1, which lists the number of times each
method (considered together with the input

Figure 20. The analogue of Figure
14, on the pruned input set of
sequences. The results for the
integer-valued evolutionary trace:
green broken line.

 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

Figure 21. Quality of prediction measures: a diagram
of measures of quality of prediction. A is the area under
the curve (shaded), d is the distance of closest approach
to the (1,1) point, and SHMS is specificity at half maxi-
mum sensitivity.
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sequence set) achieves the highest score according
to our four measures. The results indicate that
there is definitive advantage in using hybrid
methods, while keeping the input sequence set
reasonably large.

Conclusion

We discussed several methods of ranking protein
residues by their importance for the protein as a
whole. They are of necessity somewhat schematic.
In particular, they do not systematically handle
the varying evolution rates across the evolutionary
tree (a problem that we attempted to address
partially in defining the zoom method; equations
(4)–(6)), and they ignore some important possi-
bilities such as correlated mutations. We suggested
a general way of integrating tree and variability
information, laid out in equation (4). Our choice of
weights in equation (4) is by no means unique,
and can conceivably be improved by incorporating
more detailed knowledge about the tree. Also, the
set of amino acid types can be changed to reflect
only a number of underlying chemical properties.2

To make more definitive mutual comparison of
the methods, more experimental backup can be
wished for in determining bigger and possibly
ranked sets of key protein residues.

We have noted that the column entropy is a very
robust method in the face of small irregularities
and inconsistencies in the input alignment, but is
insensitive to evolutionary relations within the
protein family represented by the alignment. The
integer-valued ET captures these details perfectly,
but it is this same input sensitivity that forces
it to dispense with a good deal of potentially
useful information. Our most successful take on
uniting the two approaches is the real-valued ET,
demonstrably on top of its class: capable of hand-
ling raw sequence input, it matches or tops the
sensitivity–specificity performance of other align-
ment/evolution methods, and its robustness
makes it potentially applicable on the proteomic
scale.

A server with an implementation of real-valued
ET method will be available†.

Materials and Methods

Key residues in the study case

The following residues were taken to be the key resi-
dues for the protein function (the numbers refer to the
enumeration in the 1irk PDB entry): 1006, 1010, 1030,
1038, 1042, 1045, 1047, 1054,1061, 1077, 1079, 1082, 1083,
1085, 1089, 1092, 1131, 1136, 1137, 1139, 1150, 1151, 1152,
1155, 1158, 1162, 1163, 1132, 1164, 1166, 1171, 1172, 1173,
1176, 1181, 1215, 1216, 1219. For a full discussion, see
Hubbard.25

Proteins in the test set

In constructing the test set we tried to put together as
diverse a set of proteins as possible (Table 2). We were
limited most strongly by the requirement that enough
point mutations can be found in the literature that are
annotated either as critical (for either structure or func-
tion of the protein) or as disease-related (see subsection
Key residues below). In this work, we settled for at least
eight residues determined as critical in at least one muta-
tional study. Furthermore, we were looking for proteins
for which an X-ray crystallographic structure is avail-
able, and for which more than 20 homologous but not
nearly identical sequences could be found. The proteins
satisfying all of the requirements are all mammalian,
and mostly human, reflecting the current research bias
toward proteins of medical importance (for which it is
the easiest to find mutational studies).

Key residues in the test set

To find a reasonable independent estimate of residue
importance for proteins in our test set, we relied on
Protein Mutant Database‡.21,32 Specifically, we used
entries containing reference to single-point mutations
in proteins at least 70% identical with our test cases,
annotated as either causing a complete loss of protein

Table 2. The proteins used as the test set

PDB code Name Function Organism Fold No. residues
No. mutations

found

1a22B Growth hormone
receptor

Signaling Human Immunoglobulin-like
b sandwich (all b)

192 9

1atnA Actin Motile Rabbit RibonucleaseH-like motif (a/b) 372 24
1au1A Interferon b Protective Human 4-Helical cytokine (all a) 166 14
1bkx CAMP-dependent

kinase
Enzyme Mouse Kinase-like (a/b) 337 8

1ctq P21 Ras Signaling Human P-loop-containing nucleotide
triphosphate hydrolase

166 31

1fha Ferritin Storage Human 172 8
1fjmA Serine/threonine

phosphatase-1
Enzyme Rabbit Metallo-dependent phosphatase 294 11

1hzxA Rhodopsin Signaling Cow GPCR-A family 340 49
1ppbH Thrombin Protective Human Trypsin-like serine protease (all b) 259 9

† http://imgen.bcm.tmc.edu/molgen/labs/lichtarge/
‡ http://pmd.ddbj.nig.ac.jp/
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activity ([0] in the notation used in the database) or a
disease.

Auxiliary test set with a geometric epitope

In Results and Discussion, in Figures 18–20 we used a
protein set described as a protein–ligand dataset by Yao
et al.,31 and the geometric epitope definition as described
by them.

Sequence selection

To obtain a set of sequences homologous to the protein
of interest, we did the BLAST27 search against the NCBI
Entrez non-redundant protein sequence database, and
used all the sequences with the E-score ,0.05. Such a
set of sequences is referred to as raw in the main text.

The sequence sets referred to as pruned were obtained
by removing from their raw counterpart the sequences
that have less than 40% similarity and more than 98%
identity with the query sequence, the sequences that
are outliers in the sequence similarity tree, and those
that have an out-standing number of gaps. Finally, we
remove sequences with residues that persistently
belong to a minority type within its group (see below).
(i) Determining outliers: from the sequence identity tree
(current implementation of ET uses unweighted pair
group method to build it22) we remove the subtrees
whose sibling node (the tree is binary) has 30 times
more leaves in its subtree. (ii) Sequences with an out-
standing number of gaps: for each rank (starting from
the rank 1) consider the induced subset sizes. If the
subset contains more than 15 sequences, remove the
sequences with the number of gaps more than ten stan-
dard deviations away from the average number of gaps
in the subset. If it contains 15 or less sequences, construct
a mock sequence that has a gap in the places where the
majority of sequences do, and any amino acid (X) other-
wise. Then remove all the members of the subset whose
gap pattern differs by 3% of the alignment length from
the pattern in the mock sequence. (iii) Sequences
with persistent minority residues: for all residues in a
sequence calculate negative log frequency of its appear-
ance in the corresponding column. From the alignment
remove the sequences for which the sum of theses values
deviates by two standard deviations from the average.
Repeat iteratively for all the groups in the tree with
more than 15 members.

The goal of the described method of pruning a raw set
of sequences is to be reproducible, and yet mimic the
effects of manual sequence selection.

Alignment

The multiple alignments were obtained using
ClustalW1.733 in the quicktree mode, with all other
parameters kept at their default values.

Alignment-based tree

We used UPGMA22 tree, with 1 minus percentage
sequence similarity as the sequence distance (see below).

Parameters of the ranking methods

The residue ranking methods we considered were
parameter-free, except for the zoom method. Equation

(6), describing the group weight that the zoom assigns,
calls for one parameter, d0: Any d in that equation is the
distance between sequences. In our implementation it
is equal to 1 minus percentage sequence similarity, a
number that equals 0 when two sequences are 100%
similar, and 0 if no two aligned positions are similar.
Two amino acid residues are considered similar if their
entry in the BLOSUM6234 matrix is equal to or greater
than the average off-diagonal entry in that matrix. The
value used for d0 was 0.05.
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