
The use of evolutionary patterns in protein annotation
Angela D Wilkins1, Benjamin J Bachman1,3, Serkan Erdin1,2 and
Olivier Lichtarge1,2,3

Available online at www.sciencedirect.com
With genomic data skyrocketing, their biological interpretation

remains a serious challenge. Diverse computational methods

address this problem by pointing to the existence of recurrent

patterns among sequence, structure, and function. These

patterns emerge naturally from evolutionary variation, natural

selection, and divergence — the defining features of biological

systems — and they identify molecular events and shapes that

underlie specificity of function and allosteric communication.

Here we review these methods, and the patterns they identify in

case studies and in proteome-wide applications, to infer and

rationally redesign function.
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Introduction
Proteins remain difficult to characterize functionally

despite the exponential growth in experimental data on

sequence, structure, and function. There are many reasons

for this persistent challenge. Proteins have not a single

molecular function but rather multiple features that coop-

eratively sustain their biological fitness. The details and

parameters of these features, for example, folding,

dynamics, cellular targeting, molecular interactions, cata-

lytic activity, allosteric control, post-translational modifi-

cations, and degradation, to name a few, are often vague for

a lack of laboratory assays to measure them accurately on a

large scale and in their relevant cellular context. As a con-

sequence, as of March 2012, fewer than 0.1% of the 21

million protein sequences from 3173 completely sequenced

genomes [1] had experimentally tested functions, and

only two-fifths had at least one automated computationally
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inferred annotation [2–4]. The number of genes without

known function is 37% in eukaryotes, 24% in humans, 33%

in the far simpler and much studied Escherichia coli, and 40%

in other bacteria [2,5]. Although most of the 4225 E. coli
genes were recently assigned putative annotations of func-

tional associations, they were not assigned biochemical

function [6]. Given concerns that some of these annotations

may not be accurate [7], the problem of translating

sequence into function, and more broadly of translating

genotype into phenotype, remains daunting.

Computational methods have long sought to fill this role. A

remarkable early success was to realize that sequence and

structure diverge smoothly: the root mean square deviation

of protein backbones increases exponentially with the

sequence divergence of evolutionarily related proteins,

or homologs [8]. This elegant observation is robust [9],

and extends to other functional features besides folding

[10] so that, in practice, it justifies homology-based pre-

dictions of structure and of function [11], arguably the two

most widespread computational applications in biology.

Other basic evolutionary principles are emerging from high

throughput and systems biology [7]. Protein mutation rate

and protein expression are inversely correlated [8], bio-

logical networks obey power-laws and are scale-free [12];

and the evolutionary rates of orthologs follow a Gaussian

spread [13]. Despite their statistical power, because these

principles involve ensemble averages over whole

sequences, structures, families, genomes and networks,

as well as very long time-scales, they carry limited infor-

mation on the direct role of individual sequence positions

to the function of a given protein.

Single residue variations may profoundly impact function

and explain why homology-based function prediction can

lead to incorrect annotations: although alike in sequence

and structure, two homologs may harbor differences at

one or just a few residues with disproportionate impact on

function [14]. The identification of such key residues is

therefore essential to distinguish meaningful variations of

function. This review therefore focuses on methods to

identify functionally relevant evolutionary patterns

among sequence, structure, and function. Such patterns

emerge naturally from random variations and natural

selection; they identify molecular events and shapes that

determine function and specificity; and they can be

approached by focusing on sequences, on structures,

and on evolutionary classification. In the second part of

the review, the focus will shift to the combination of these

techniques in a unifying Evolutionary Trace framework.
www.sciencedirect.com
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Throughout the review, we will refer to two popular

functional classification systems. Gene Ontology (GO)

[4] provides well-defined terms for the molecular func-

tion, cellular component, and biological process of a gene

product, along with evidence codes that specify the basis

for the annotation and therefore its reliability. Enzyme

Commission classification designates enzymatic function

into four (EC) numbers [15], indicating the mechanism of

the enzyme, the type of bond, the catalyzed reaction, and

the substrate, respectively.

Sequence-based patterns
The simplest and most widespread evolutionary pattern

for defining function is homology between proteins or

domains. The rationale is that homology implies that

proteins share a common ancestry and hence the function

of that common ancestor. Once it is recognized by sim-

ilarity searches with BLAST or PSI-BLAST [16], func-

tion is transferred between close homologs. A concern is

that these homologs may have already evolved distinct

functions. Thus homology-based annotation errors are not

uncommon: divergence of activity has been observed

even between enzymes with as much as 70% sequence

identity [17]. To compound this problem, these errors

may in turn propagate across databases [7]. To reduce

incorrect annotations, multiple techniques, including

GOtcha [18], ESG [19], and GOPred [20], tally the GO

terms of all of the most significant sequence similarity

matches and identify those with the best statistics. For

example, GOtcha weighs this tally by the significance of

each PSI-BLAST match to a database of proteins with

GO annotations, to generate a probability that the query

protein performs a particular function.

Other methods go beyond whole sequence comparison to

focus on alignment columns with significant conservation

[21,22]. The results are generalized profiles to infer

structural or functional similarities. Pfam [23�] is a widely

used database of Hidden Markov Model profiles gener-

ated by HMMER [24] applied to the Uniprot database

[2]. To enhance specificity, Pfam-A uses a smaller set of

almost 12 000 sequences representative of individual

families that were hand-curated with functional annota-

tions from literature references; to achieve sensitivity,

Pfam-B uses a larger set of nearly 140 000 families that

were clustered automatically and without dedicated

annotation or reference. While Pfam and methods such

as Prosite [25] and Interpro [26] focus primarily on the

entire protein domain, other sources, such as the ELM

database [27�], focus instead on smaller motifs.

Even more refined searches focus on specific residues that

together define a functional signature. Transfer of func-

tion based on these signatures can increase annotation

specificity, that is lower false positives, by recognizing

functionally inconsistent differences among key residues.

Several sequence motif-based algorithms were designed
www.sciencedirect.com 
specifically for this task, including Confunc [28], DME

[29], and EFICAz2 [30]. All rely on discovering discri-

minatory sequence fragments shared by proteins with

identical function and not others. ConFunc applies GO

terms to partition homologs into multiple subsets. The

sequences of each subset are then aligned to identify

conserved residues. A GO term can then be transferred to

a new homolog if it shares this residue signature. Controls

suggest 24% greater accuracy of annotation compared to

BLAST for homologs with less than 35% sequence iden-

tity. Likewise, DME and EFICAz2 use conservation to

key in on functional residues specific to given enzyme

functions.

Together these studies show that comparative sequence

analyses identify evolutionary patterns at different levels

of resolution, from whole sequence to profiles to motifs,

that are all relevant to structure and function and useful to

transfer annotations among proteins.

Structure-based patterns
Structural information adds another dimension to the

search for functionally relevant similarities among

proteins. First, global structure alignments will detect

homologies that elude sequence searches [8]. Addition-

ally, spatial correlation among key residues can reveal

highly specific three-dimensional (3D) functional fea-

tures [31]. Some structural comparisons treat the structure

as a rigid body, as in DALI [32] and TM-align [33], while

others tolerate flexibility, as in TOPS++FATCAT [34�].
A challenge for these structural alignments is the lack of a

universally accepted definition of structural similarity

[35]. In order to address this, CATH [36] and SCOP

[37] created manually curated protein structure classifi-

cation codes based on both domain and evolutionary

similarities. These classifications enable functional infer-

ence of protein structure in many cases, but overall, and

for the same reasons that a few amino acid prove deter-

minant of function in sequence comparisons, the struc-

ture-to-function relationship over protein domains is not

one-to-one [38].

This motivated searches for specific structural regions

resembling previously characterized pockets for catalysis

and ligand-binding or surface regions for macromolecular

interactions [39]. In a control set of 332 ligand-binding

proteins, ConCavity [40] correctly predicted the binding

site in 80% of cases by searching jointly for the local

conservation of sequence and structural topology. Similar

methods [41,42] are listed in Table 1. FINDSITE [43�]
and 3DLigandSite [44] extend these ideas to homology

models and detect the functional determinants of a ligand

binding site. FINDSITE specifically creates homology

models of the query, structurally aligns these to deter-

mine a likely binding site, and then suggests ligands and

other GO functional annotations. In controls with less

than 35% sequence identity to the nearest target protein,
Current Opinion in Structural Biology 2012, 22:316–325
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Table 1

Common methods to characterize proteins and the main evolutionary pattern they rely on (See text for citations).

Method Website Comments

Gene ontology http://www.geneontology.org Standard representation of gene and gene product attributes

Enzyme nomenclature http://www.chem.qmul.ac.uk/iubmb/enzyme Enzyme classification

BLAST/PSI-BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi Sequence comparison

Gotcha http://www.compbio.dundee.ac.uk

/Software/GOtcha/gotcha.html

Assigns GO terms based on sequence comparison

ESG http://kiharalab.org/web/esg.php Assigns GO terms based on sequence comparison

GOPred http://kinaz.fen.bilkent.edu.tr/gopred Assigns GO terms based on sequence comparison

Pfam http://pfam.sanger.ac.uk Database of protein families and their MSA

HMMER http://hmmer.janelia.org Sequence comparison based on hidden Markov models

Prosite http://prosite.expasy.org Database of protein domains, families and functional sites

Interpro http://www.ebi.ac.uk/interpro Database of protein functional signatures

ELM http://elm.eu.org/links.html Resource to investigate functional sites in eukaryotic proteins

ConFunc http://www.sbg.bio.ic.ac.uk/�confunc Assigns GO terms based on sequence comparison

DME http://adios.tau.ac.il/DME11.html Assigns full EC number based on sequence comparison

Eficaz2 http://cssb.biology.gatech.edu/skolnick

/webservice/EFICAz2/index.html

Assigns full EC number based on sequence comparison

Dali http://ekhidna.biocenter.helsinki.fi/dali_server 3D protein structure comparison

TM-align http://zhanglab.ccmb.med.umich.edu/TM-align 3D protein structure comparison

TOPS + +FATCAT http://fatcat.burnham.org/TOPS 3D protein structure comparison

CATH http://www.cathdb.info Protein domain structure classification

SCOP http://scop.mrc-lmb.cam.ac.uk/scop Protein domain structure classification

ConCavity http://compbio.cs.princeton.edu/concavity Predicts ligand binding sites from protein structure

FTSite http://ftsite.bu.edu Predicts ligand binding sites from protein structure

LIGSITEcsc http://projects.biotec.tu-dresden.de/pocket Predicts ligand binding sites from protein structure

3DLigandSite http://www.sbg.bio.ic.ac.uk/�3dligandsite/ A threading-based method to predict ligand binding site

FINDSITE http://cssb.biology.gatech.edu/skolnick/files/FINDSITE A threading-based method to predict binding site, ligand,

and function

pevoSOAR http://sts.bioengr.uic.edu/pevosoar Assigns up to four digit EC numbers based on local

structure similarities

Catalytic Site Atlas http://www.ebi.ac.uk/thornton-srv/databases/CSA Database of known and predicted catalytic residues in the

protein structures

FunClust http://pdbfun.uniroma2.it/funclust Identifies local functional motifs in the protein structures

GASPSdb http://gaspsdb.rbvi.ucsf.edu Database of 3D motifs generated by GASPS algorithm

SuMo http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome 3D structure comparison based on local structure similarity

Par-3D http://sunserver.cdfd.org.in:8080/protease

/PAR_3D/index.html

Detects active site residues using 3D templates

PINTS http://www.russelllab.org/cgi-bin/tools/pints.pl 3D structure comparison based on non-sequential local motifs

Flora http://www.mcsg.anl.gov/ Assigns three digit EC numbers based on local structural

similarities

GeMMA http://www.biochem.ucl.ac.uk/cgi-bin/dlee/GeMMA Provides classification based on phylogenetic analysis

SCI-PHY http://phylogenomics.berkeley.edu/ Provides classification based on phylogenetic analysis

PROTONET http://www.protonet.cs.huji.ac.il Classifies protein sequences based on phylogenetic analysis

SIFTER http://sifter.berkeley.edu Assigns GO terms based on phylogenetic analysis

PhylomeDB http://phylomedb.org/ Database of phylogenetic trees with ortholog assignments

TreeFam http://www.treefam.org/ Database of phylogenetic trees with ortholog assignments

ET http://mammoth.bcm.tmc.edu/ETserver.html Ranks amino acids based on phylgenetic analysis

ETA http://mammoth.bcm.tmc.edu/eta Assigns three digit EC numbers and GO terms based on

local structural similarities
FINDSITE reached 67% accuracy. A related method,

pevoSOAR [45], annotates structures for enzymatic func-

tion with 80% accuracy in limited controls. Together these

studies show that patterns of local structural similarities

add important information for functional inference.

Further following the logic of sequence comparisons, struc-

tural searches can also focus on just the few residues that

mediate the most essential aspects of catalysis or binding.

The example of the Ser-His-Asp catalytic triad of serine

proteases illustrates that only a few amino acids in a well-

defined structural conformation are sufficient to annotate
Current Opinion in Structural Biology 2012, 22:316–325 
function in structures [46]. This suggests a general strategy

in which a small but functionally essential structural motif,

called a 3D template, is matched geometrically in other

protein structures. A matched protein may then potentially

perform the function associated with the template [47].

Several methods, including FunClust [48], GASPS [49],

SuMo [50], PAR-3D [51], and PINTS [52] follow this

strategy. They typically rely on a source of structural motifs

that are functionally relevant, such as The Catalytic Site

Atlas [53] database, which compiles templates for enzyme

activity taken from the experimental literature. To identify

enzymatic templates more generally, FLORA defines
www.sciencedirect.com
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Table 2

Recurrent observations regarding ET residues suggest general

rules of proteome evolution which link sequence, structure and

function.

Proteomic rules

1. Amino acids may be ranked by evolutionary importance

2. Top-ranked residues cluster in the protein structure

3. Clusters predict functional sites

4. Clustering quality correlates with prediction quality

5. Maximizing clusters improves the quality of predictions
them in terms of recurrent structural patterns in the super-

imposed structures of enzyme homologs [54].

Phylogenomic patterns
Molecular function may also be inferred from phyloge-

nomic classifications. Starting with an alignment of homo-

logs and an associated phylogenetic tree, annotations are

transferred within branches following the topology of the

tree [55]. Typically, uncharacterized proteins can inherit

the annotation of the ortholog subfamily to which they

belong. GeMMA [56��], SCI-PHY [57], PROTONET

[58��], and SIFTER [59,60] reflect these ideas. The

phylogenetic tree of PROTONET [58��] has nearly 10

million sequences, and a user can retrieve the evolution-

ary tree relevant to a query protein of their choice, and

navigate its branches to search for functional information.

In a more automated approach, SIFTER models protein

evolution to propagate GO annotations within the tree

[59,60]. This is a slow process, but limiting the number of

possible combinations of molecular functions for individ-

ual proteins significantly raises efficiency without loss of

prediction accuracy [60].

Because paralogs arise from gene duplication and usually

evolve different functions, it is important to distinguish

them from orthologs. Algorithms that detect orthology

often rely on tree reconciliation approaches. Typically, a

phylogenetic tree of homologs is compared to a speciation

tree, allowing paralogs and orthologs to be identified by

inferring the order of events for gene loss and duplication.

TreeFam [61] provides ortholog and paralog assignments

based on this approach, as well as phylogenetic trees for

individual proteins for mammal families. PhylomeDB

[62] uses a different species-overlap algorithm, which

compares the species identity of closely related branches

to decide whether their parental node is a duplication or a

speciation. It provides orthology predictions, alignments,

and phylogenetic trees for human, Saccharomyces cerevisiae,
and E. coli.

Synthesis through evolutionary trace patterns
It is possible to integrate the diverse evolutionary patterns

seen in sequences, motifs, templates, and phylogenies

through Evolutionary Trace (ET) analysis [63]. This

approach applies proteome-wide and has been exten-

sively validated in experimental case studies. It yields

tools to map functional sites in proteins, identify their key

determinants, guide protein redesign studies, and extract

3D functional motifs with which to annotate protein

function in novel structures. In view of this variety of

applications, ET patterns arise from a surprisingly basic

classification procedure.

In order to discover which residues are important to

structure and function, ET systematically ranks amino

acid positions by their phylogenetic patterns of variation.

Starting with a protein family alignment and the
www.sciencedirect.com 
corresponding evolutionary divergence tree, ET ranks

residue positions better, or worse, depending on whether

the substitutions in their alignment column correlate with

larger, or smaller, tree divergences (Figure 1). Thus, by

definition, variations of top-ranked ET residues entail big

evolutionary steps, suggesting that they contribute impor-

tantly to structure and function. Variations of poorly

ranked residues, by contrast, entail small evolutionary

steps and suggest at best a limited influence on structure

and function. Thus, by systematizing these comparisons

between alignment and tree, ET ranks residue positions

relative to each other by the size of their phylogenetic

variations. This procedure mimics the laboratory strategy

of measuring with assays which substitutions disrupt

function, replacing assays and mutations in the wet lab

with divergences and variations, respectively, in silico
[63].

A series of technical studies show that the ET rank of

evolutionary importance reveals structurally and func-

tionally relevant patterns (Table 2). First, top-ranked

ET residues cluster spatially in protein structure [63–
65]. Second, this clustering is widespread in the structural

genome and greater than expected by chance as measured

with a z-score to yield an overall measure of structural

clustering of important residues (Figure 2). When no

structure is available, sequence-based quality measures

can also assess the significance of ET patterns [66]. Third,

these clusters overlap with functional sites as shown in 37

of 38 proteins with known ligand binding sites, and so can

yield insights into the regions of a protein that mediate

function most directly [64,67]. Fourth, the ET link be-

tween sequence and structure is such that better cluster-

ing z-score strongly correlates with more accurate

functional sites discovery [67], as shown in 50 diverse

proteins by varying the input parameters of ET and

observing correlations mostly above 0.7 [68]. Mapping

evolutionarily important residues to the structure has also

been useful in other studies. Spatial clustering of import-

ant residues formed presumed functional sites useful for

protein–protein docking [69] and the prediction of cata-

lytic residues [70]. Thus phylogenetic patterns of residue

variations in sequences are linked to a clustering bias in

structures that reveals functional sites. As discussed next,
Current Opinion in Structural Biology 2012, 22:316–325
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Distribution of the statistical clustering z-score of ET residues in 10 417

proteins from the PDB90. This z-score is the difference between the

observed and the expected random clustering pattern in units of

standard deviation. A z-score can be obtained at any ET coverage of a

protein. This histogram shows the maximum clustering z-score between

0% and 50% coverage, which is representative of z-scores over most of

this interval. The high values (94% with z-score > 2) show that

evolutionarily important residues cluster together in the protein, as a

general rule.
one may then interrogate a novel structure with ET to

identify its functional sites and its residue determinants.

In a variety of prospective experimental case studies, this

guided the design of separation-of-function mutations;

the rewiring of functional specificity, such as the discov-

ery and reprogramming of an allosteric pathway; and the

design of peptide inhibitors. On a structural proteomic

scale, top-ranked ET residues enable large-scale function

prediction.

Case studies: evolutionary patterns and
functional redesign
Selective separation of function mutations helped clarify

in the eukaryotic Ku70/80 heterodimer how different and

antagonistic functions co-exist in the same complex, and

suggested a long-sought interaction site with the gene

repressor LexA in the prokaryotic protein RecA. The

former study identified two structurally distant clusters

of top-ranked ET residues that suggested distinct func-

tional sites in Ku70/80. Targeted mutations to one of the

clusters disrupted end-joining but not telomere-mainten-

ance, and mutations of the other cluster did the reverse.

Thus double-strand break DNA repair and telomere

maintenance segregate to opposite ends of the Ku struc-

ture which explains how both functions may be per-

formed without risking end to end chromosome fusion

[71]. Likewise, in RecA, ET revealed a number of new

functional sites that were then mutated. These mutations

disrupted either DNA repair by recombination, or LexA

interaction, but not both. Thus, even though RecA is a
www.sciencedirect.com 
heavily mutagenized, classic example for homologous

DNA repair, ET patterns of evolutionary importance

revealed previously unrecognized functional regions in-

cluding the potential trigger of LexA-mediated error-

prone DNA repair — one of the root causes of antibiotic

resistance [72��].

ET patterns typically identify functional sites on protein

surfaces, but they can also suggest internal mechanisms.

An ET study mapped key functional residues in the

seven-helical transmembrane core of G-protein-coupled

receptors (GPCRs) and suggested that distinct internal

functional modules couple allosterically the binding of

extracellular ligands to intracellular signaling through G

proteins or b-arrestin-mediated internalization. Consist-

ent with predictions, mutations of top-ranked ET resi-

dues in each module variously inhibited ligand binding,

caused constitutive activity [73], and could even block G

protein signaling while leaving b-arrestin signaling intact

[74]. More recently, a difference analysis of ET applied

solely to bioamine receptors and applied to all rhodopsin-

related receptors suggested a set of residues uniquely

important to bioamine function. Single point mutations

then transferred these putative bioamine specificity

determinants from the 5HT-2A serotonin receptor into

the D2R dopamine receptor and, as a result, increased

serotonin signaling and decreased dopamine signaling

independent of changes in binding affinity [75��]. These

mutations, located deep in the GPCR transmembrane

core, show that the GPCR allosteric pathway can encode

signaling response specificity independently of binding,

demonstrating the concept of allosteric specificity, and

that this specificity code can be traced back and rekeyed,

at least in part, by swapping top-ranked ET residues

between paralogs.

Besides point mutations, ET patterns have been moved

whole into a new scaffold to create functional mimetics. A

cluster of ET residues suggested a novel binding site on

surface exposed helices of G-protein-coupled receptor

kinases (GRK), proteins that phosphorylate the intra-

cellular loops of GPCRs to regulate their activity [67].

This site was then mimicked with peptides designed to

keep the evolutionarily important residues intact, while

less important amino acids were substituted in order to

stabilize a helical structure. Some of these peptides

inhibited GPCR phosphorylation by 80% [67]. Together

these studies show that in diverse proteins and in diverse

types of experimental manipulation, top-ranked ET resi-

dues consistently identify the key determinants of func-

tional sites. They should therefore be useful for 3D

functional motifs to annotate function in novel protein

structures.

ETA functional annotation
In order to annotate function of novel protein structures

solved by structural genomics, ET annotation (ETA)
Current Opinion in Structural Biology 2012, 22:316–325
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follows the 3D motifs strategies reviewed above. Uniquely,

this approach repeatedly exploits ET patterns to select

motifs and to filter acceptable matches. ETA applies ET

ranks to the structure of an unknown protein, the query, to

identify six best clustering, top-ranked ET residues at or

near a protein structure’s surface: the 3D template. Simple

geometric matches of such templates to protein structures

of known function, the targets, often prove too non-specific

to suggest identical functions accurately. However, false

positives can be reduced dramatically by requiring that the

matched sites in the target be composed of top-ranked

residues [76]; that a 3D template from the target recipro-

cally match the query [77]; and that a plurality of targets

concur in suggesting the same function [76]. If so, this

functional annotation may be reliably transferred to the

query in high throughput fashion, with 92% accuracy for

enzymes at three-digit EC numbers; and 94% accuracy for

non-enzymes at the third GO depth level in over a thou-

sand Structural Genomics protein controls [78]. These

studies confirm, on a large scale, that phylogenetic residue

variation patterns convey highly specific structure–func-

tion information.

A recent extension of ETA exploits graph-based semi-

supervised learning to improve function annotation speci-

ficity and coverage. The approach ties all-against-all ETA

matches among all known protein structures into a net-

work, in which nodes represent protein structures and links

indicate ETA 3D structural template matches between

proteins [79�]. Labels that indicate function are then

diffused globally following the topology of this network.

Although all labels reach nearly all nodes, only a fraction

does so with any statistical significance. This global

analysis improves accuracy by 6% (to 96% accuracy) at

65% coverage over all four EC numbers compared to ETA,

and it also performs favorably against other methods [54].

As further validation, a novel and nontrivial ETA network

annotation was experimentally confirmed as a carboxyles-

terase (EC 3.1.1.1) in a vancomycin resistant strain of

Staphylococcus aureus [79�]. This annotation was based on

matches to three structures with sequence identities ran-

ging between 11 and 13%. These data show that global

comparison of phylogenetic variations patterns of 6 resi-

dues, in a well-defined structural arrangement, uncovers

accurate and specific functional information, including the

resolution of substrate specificity, far into the twilight zone

of protein sequence similarity.

Conclusions
The relationship between sequence, structure and func-

tion is part of the broad effort to understand how geno-

type is linked to phenotype. Some approaches rely on

biophysical modeling and others are purely experimental.

However, because genotype information is constantly in

flux and a gene’s survival depends on the fitness that it

encodes, evolutionary analysis is another central approach

to understand how genotype relates to phenotype. The
Current Opinion in Structural Biology 2012, 22:316–325 
exponential dependence of deviations in structure and

function as a result of deviations in sequence among

homologs suggests that evolution proceeds smoothly fol-

lowing regular processes over long time periods. A chal-

lenge is to complement these statistical observations of

evolutionary regularity with equally precise molecular

level patterns that help to recover biological meaning

from high throughput sequence, structure, and function

data. This review shows that different approaches that

compare sequences and structures, motifs and templates,

correlations and phylogenetic classification are able to

identify general patterns that contain precise information

on molecular function.

Many of the benefits of each of these approaches are

naturally contained in Evolutionary Trace analysis. This

approach scores sequence positions by their relative evol-

utionary impact, as judged from the size of the evolutionary

steps associated with their variations. Thus, residues are

ranked by how well their own evolution correlated with the

evolution of all other sequence positions, represented by

the phylogenetic tree. Critically, residues with variations

that correlate with root divergences are more important and

have remarkable structural and functional properties: they

cluster structurally; these clusters map functional sites;

clustering quality correlates with functional site prediction;

experimental mutations at top-ranked residues control

function and specificity; and their mimicry enable the

transfer of function to a peptide, or to other protein

structures on a proteomic scale in silico. Thus, top-ranked

ET residues embody features in the sequence, in the

structure, in the protein function, and in the phylogeny

that are reproducible as general across the proteome. This

suggests that they capture basic patterns linking genotype

to phenotype during evolution. To fully support this view,

however, it remains to reframe evolutionary trace analysis

in a formal and extensible framework to make explicit the

genotype to phenotype relationship. Such a relationship

might then, in turn, help clarify the impact of missense

mutations on protein function.
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