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SUMMARY
Most disease-gene association methods do not account for gene-gene interactions, even though these play
a crucial role in complex, polygenic diseases like Alzheimer’s disease (AD). To discover new genes whose
interactionsmay contribute to pathology, we introduceGeneEMBED. This approach compares the functional
perturbations induced in gene interaction network neighborhoods by coding variants from disease versus
healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified
novel candidates. These geneswere differentially expressed in postmortemADbrains andmodulated neuro-
logical phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration
in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair
and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general
approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of
other complex diseases.
INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder char-

acterized by progressive memory loss, language deficits, and

behavioral abnormalities.1 An estimated six million individuals

in the United States are afflicted with AD, and this number is pro-

jected to double by 2050.2 The polygenic nature of AD presents

an obstacle to early diagnosis and risk prediction. In late-onset

AD (LOAD), the estimated genetic heritability is 60%–80%.3,4

Though genome-wide association studies (GWASs) have identi-

fied >40 LOAD loci,5–9 they account for only a fraction (�33%) of

the heritability.10,11 While there are many explanations for this

‘‘missing heritability’’ problem,12–14 which is seen across com-

plex diseases,15 an attractive hypothesis suggests that genetic

interactions may be a culprit.16

Genetic interactions are functional interactions observed

among gene variants where the resulting phenotype differs

from the independent phenotype of each variant.16,17 Thus,

relatively benign mutations may combine to generate complex

phenotypes. Indeed, such non-additive genetic interactions

have been observed in disease18–20 and have improved current

models of the genotype-phenotype relationship.21,22 However,

genome-wide discovery of pairwise genetic interactions pre-
Cel
This is an open access article und
sents major challenges. Theoretical analysis suggests that, un-

der reasonable assumptions, nearly 500,000 samples would be

needed to identify statistically significant genetic interactions.16

The potential use of prior knowledge to compensate for neces-

sary sample size has motivated the development of network

informed gene prioritization methods for various diseases.23–28

These approaches do not typically use patient-specific genetic

data. However, when they do, they often rely on expression

data (e.g., HIT’nDRIVE)27 or they are built for somatic mutations

(e.g., HotNet2)28 and are not immediately amenable to the case-

control study designs typical of germline GWASs.

Advances in graph representation learning open new opportu-

nities to analyze genomes in the context of biological networks.

Graph learning techniques have been successful in a variety of

biological applications, including predicting protein-protein

interactions29–33 and drug responses or side effects.34–37 Specif-

ically, node embedding enables machine learning on networks

by compacting the qualitative and quantitative properties of a

network node in a mathematically suitable framework. For

example, Deep Walk38 and Node2Vec39 use random walk algo-

rithms to represent nodes as vectors. Alternatively, Graph Con-

volutional Networks40 or Graph Attention Networks41 use graph

neural network architectures to construct node representations
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instead. Regardless of the approach, node embeddings should

conserve the relative properties between original graph nodes,

meaning that similar nodes should embed similarly. We hypoth-

esize, based on this principle, that differences in a gene’s

embedding in a disease network compared with its embedding

in a healthy network may reflect a role in disease pathology.

This motivated us to develop GeneEMBED (gene-embedding-

based evaluation of disease-gene relevance) to pinpoint genetic

risk factors of disease by examining the differential perturbation

patterns of gene interactions. The approach takes a predefined

molecular network and annotates it with the functional impact

of protein coding variants across cases and separately controls.

Importantly, the approach considers all protein coding variants

in estimating gene-level perturbed protein function. Machine

learning performs embeddings on each network and then finds

which genes have the most difference in case versus controls

embeddings. Notably, this approach addresses the limitations

of standard models by feasibly assessing the contribution of

pairwise, and higher order, genetic interactions on disease and

doing so with a case-control study design of typical genome-

wide studies.

While this approach is general and applicable to many

complex diseases, we tested this in two LOAD datasets: the

Alzheimer’s Disease Sequencing Project (ADSP) (dbGaP:

phs000572.v7.p4) Discovery cohort comprising 2,729 affected

(AD+) individuals and 2,440 healthy (AD�) controls and the

Extension cohort with 481 AD+ and 488 AD� individuals

(NIGADS: NG00067). To assess robustness of GeneEMBED,

we used two variant impact scoring methods, Evolutionary

Action (EA)42 and PolyPhen2 (PPh2),43 and we tested three

different molecular interaction networks: STRING,44 HINT,45

and a brain-specific network.46,47

Candidate genes from the Discovery and Extension cohorts

were consistent with one another and with known AD genes.

The candidates interacted with manually curated AD-associated

genes and were dysregulated in AD brains. Functional in silico

analysis showed they were involved in pathways relevant to

AD, including for cell cycle and DNA replication. In vivo perturba-

tion analysis confirmed that GeneEMBED genes were modifiers

of tau and b-amyloid-induced phenotypes in well-established

Drosophila AD models,48–50 and their modulation in mice

showed abnormal neurological phenotypes, supporting their

role in normal neuronal maintenance and function. Importantly,

many GeneEMBED candidates are druggable with already

approved compounds. Overall, these results point to new tar-

gets for therapeutic development in AD and broadly support a

novel and general paradigm to interrogate other complex genetic

diseases.

RESULTS

GeneEMBED identifies genes that are perturbed in AD
With a view to discover AD genes, GeneEMBED aims to combine

the integrative features of network biology with machine

learning to find genes with functional interactions perturbed

differently among cases and controls, due to mutations. First,

GeneEMBED builds a personalized functional impact network

by calculating a perturbation score (PS) for each gene of each
2 Cell Genomics 2, 100162, September 14, 2022
subject of a cohort. This score reflects all non-synonymous var-

iants in the gene (v); the impact of each variant is estimated by

either EA42 or PPh243 (Variant Impact ScoreEA and VISPPh2,

respectively) and zygosity (zyg) (Figure 1A; STAR Methods).

The PS scores are then mapped to a gene network of choice,

such as the STRING protein-protein interaction network, by

setting the weight of an existing edge between two genes as

the sum of their PS score. Finally, the edge weights are averaged

across all cases, or separately across all controls, to produce

two global cohort networks that compile the aggregate

mutational perturbations of protein-protein interactions in cases

and in controls. Both networks are then processed with the

GraphWave51 machine learning algorithm, which applies an un-

supervised diffusion-aided wavelet decomposition to assign a

continuous vector-valued embedding to each gene or node.

This embedding is based on the topological (geometric distribu-

tion of the edges in the node’s vicinity) and functional (functional

information associated with each edge) properties surrounding

the gene in the network. As a result, the vector assigned to

each gene represents the integrated functional perturbation of

the variants in its network neighborhood. The final step applies

principal-component analysis (PCA) to identify vectors with

significant differences between the case and control networks

(false discovery rate [FDR] < 0.01), suggesting distinct perturba-

tion patterns in these genes between AD versus controls.

Next, to test the algorithm and identify genetic factors underly-

ingAD,weappliedGeneEMBED to thewhole-exomesequencing

(WES) and whole-genome sequencing (WGS) data from the

ADSP Discovery and Extension cohorts, respectively, using

either VISEA or VISPPh2 for the variant impact score and initially

the STRING protein-protein interaction network. In addition, we

applied GeneEMBED to healthy control versus healthy control

using both VISEA and VISPPh2 to identify potential false-positive

(FP) genes. After removal of FPs, GeneEMBED identified 69

AD� candidates in the Discovery Cohort and 119 candidates in

the Extension cohort with VISEA and 128 candidates in the

Discovery Cohort and 120 genes in the Extension cohort

(Table S1) with VISPPh2.

Fourteen genes overlapped between theDiscovery andExten-

sion cohorts when using VISEA (one-tailed hypergeometric p z
1.86e�16). Of these, nine genes had evidence in literature docu-

menting their association with AD (Figure 1B; APOE, CSF1R,

ILR4, MAPK6, MAPT, REST, RIPK4, SP3, and TRIB3).52–60

Particularly notable were MAPT and APOE. Neurofibrillary tan-

gles, one of the primary AD biomarkers, are aggregates of hyper-

phosphorylated MAPT gene products.61 APOE, on the other

hand, is one of the strongest genetic predictors of AD.61

Similarly, 16 genes overlapped between Discovery and Exten-

sion cohorts when using VISPPh2 (one-tailed hypergeometric pz
4.25e�15), of which six have been previously linked to AD pa-

thology (Figure 1B; CCT5, ERBB2, MAPK6, REST, SYNJ1, and

TP53).55,57,62–65 GeneEMBED-VISPPh2 did not recover APOE in

the Discovery cohort but did so in the Extension.

GeneEMBED also identified well-known genes in which rare

variants are associated with AD, including TREM266 and

SORL1,67 though these genes are recovered only in the Discov-

ery cohort. Comparing VISEA to VISPPh2, 34 genes overlapped in

the Discovery cohort (one-tailed hypergeometric pz 1.46e�53)



Figure 1. Overview of GeneEMBED and AD candidate genes

(A) GeneEMBED: for an individual, genes are first assigned a perturbation score (PS) consolidating information from all the gene’s variants appearing in the

individual. The gene PS estimates the total loss of function probability given various combinations of variant level loss-of-function probabilities. Edge weights for

an individual’s network are calculated by the sum of the PS of the connected genes. Edge weights are then averaged over to construct one case specific and one

control specific graph. Node embedding is performed on the genes in the two networks. Finally, embeddings are projected in a PCA space to measure distances

between nodes in case and control networks.

(B) GeneEMBED using EA identified 69 candidate genes in Discovery and 119 in Extension with 14 overlapping genes, significant by one-tailed hypergeometric

test. In PPh2 analyses, 128 candidate genes were found in Discovery and 120 in Extension with 16 overlapping genes, significant by one-tailed hypergeometric

test. A large portion of overlapping genes have been previously implicated in AD biology.
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and 44 genes overlapped in the Extension network (one-tailed

hypergeometric p z 2.46e-64), indicating concordance be-

tween these two impact scores. Lastly, we found that four

genes overlapped among all cohort-VIS combinations with a

one-tailed hypergeometric p z 8.58e�10. These data suggest

that GeneEMBED is robust to inter-cohort variability as well as

differences in impact scoring systems and can recover several

well-characterized, positive control AD genes.

In order to control against a standard method for inferring

gene-disease associations, we used Multi-marker Analysis of

GenoMic Annotation (MAGMA), which prioritizes genes based

on multiple regression analysis. This method can be performed

genome-wide, allowing it to be used for gene discovery.68

MAGMA identified 31 AD-associated genes in the Discovery
cohort and only seven in the Extension, with no overlap

(Table S2). MAGMA in the Discovery cohort shared only APOE

with both GeneEMBED-VISEA analyses and GeneEMBED-

VISPPh2 in Extension while overlapping with VISPPh2 analysis in

Discovery cohort by two genes SORL1 and PRIM1. Similarly,

MAGMA in Extension only shared TPO with VISPPh2 in Discovery

and did not overlap with any other analyses. Of the 31 MAGMA

candidates from the Discovery cohort, nine had been previously

associated with AD, including APOE and TOMM40.52,69 This in-

dicates that MAGMA was less effective and less reproducible at

this small sample size.

To assess the recovery of GeneEMBED in a systematic

manner, we measured one-tailed hypergeometric overlaps be-

tween GeneEMBED candidates and 208 AD-associated genes
Cell Genomics 2, 100162, September 14, 2022 3



Article
ll

OPEN ACCESS
in the DisGeNet database. DisGeNet compiles gene-disease

associations based on genetic, clinical, and animal model cura-

tion.70 We found a significant overlap (p = 0.012–5.3e�4) be-

tween GeneEMBED candidates and DisGeNet genes across

functional mutational impact methods (VISEA versus VISPPh2)

and cohorts (Discovery versus Extension; Table S3). In addition,

we found significant overlaps between AD-associated genes

from the comparative toxicogenomic database (CTD)71 and

GeneEMBED-VISEA in both the Discovery (p = 0.047) and Exten-

sion (p = 3.3e�3) cohorts. MAGMA candidates in the Discovery

cohort recovered similar significant overlaps (Table S3; the low

number of MAGMA candidates in the Extension cohort

prevented a similar analysis).

These data suggest that GeneEMBED is able to significantly

recover several known AD genes despite large differences in

cohort sizes. Moreover, MAGMA was unable to reproducibly

retrieve genes between the Discovery and Extension cohorts,

while GeneEMBED found significant overlaps. Taken together,

these findings demonstrate the robustness of GeneEMBED,

compared with MAGMA, to both inter-cohort variability

and sample size. Overall, GeneEMBED identifies candidates

distinct from MAGMA, which are nonetheless enriched for

known AD-associated genes, suggesting an identification of

disease-relevant signal.

GeneEMBED candidates are robustly connected and
relevant to AD
To assess the role of GeneEMBED candidates, we asked whether

they are implicated in molecular changes related to AD, specif-

ically, dysregulated gene expression as tallied by the Accelerating

Medicines Partnership Alzheimer’s Disease (AMP-AD) RNA

sequencing from seven brain regions.72–77 To focus on novel

genes, we removed GeneEMBED genes that overlapped with

any of five curated AD gene sets (DisGeNet, CTD, ClinVar,

GWAS Meta 1, and GWAS Meta 2).5,6,70,71,78 The remainder was

significantly dysregulated in the temporal cortex of AD patients

(TCX) (one-tailed hypergeometric p < 0.05; Figure 2A), indepen-

dent of both the functional impact method (VISEA versus VISPPh2)

and the cohort (Discovery versus Extension). However,

GeneEMBED-VISEAcandidateswere alsodysregulated in the par-

ahippocampal gyrus (PHG) (Figure 2A) for both cohorts and in the

cerebellum (CBE), frontal pole (FP), superior temporal gyrus (STG),

and dorsolateral prefrontal cortex (DLPFC) (one-tailed hypergeo-

metric p < 0.05; Figure 2A) for the Extension cohort, whereas

that was only true for GeneEMBED-VISPPh2 on the CBE, also in

the Extension cohort. MAGMA, in contrast, found no enrichment

in dysregulated genes.

In addition to this, the number of brain regions with signifi-

cant dysregulation of candidate genes for GeneEMBED-VISEA

in the Discovery cohort and GeneEMBED-VISPPh2 in the Exten-

sion cohort was on par with the number from two AD GWAS

meta-analyses (permutation-based one-tailed Z test p z
1.2e�2, p z 2.3e�3, pGWAS Meta 1–2.8e�3, and pGWAS

Meta 2–4.9e�3, respectively). Remarkably, GeneEMBED-VISEA

applied to the Extension cohort identified candidates signifi-

cantly dysregulated in six brain regions in AD (p z 1.6e�13)

(Figure 2B). Moreover, many of these genes were also dysregu-

lated in single cells (Figure 2C). Together, these data indicate a
4 Cell Genomics 2, 100162, September 14, 2022
strong link between this group of candidate genes and AD pa-

thology. This link, however, could be either causative or

responsive.

Next, we tested whether novel GeneEMBED candidates were

connected to AD-reference gene sets. For this, we measured

how well information propagated between them and AD-associ-

ated genes in a protein-protein interaction (PPI) network79–81 us-

ing the nDiffusion method.82 Area under a receiver-operator

curve (AUROC) measures the strength of their interaction, and

a permutation-based Z score over 100 permutations is calcu-

lated for the significance of the observed AUROC compared

with a distribution of random gene sets. We used two disease-

gene association databases (DisGeNet—208 genes70 and

CTD—103 genes71) and three variant-based reference gene

sets for AD (GWASMeta 1–25 genes,5 GWASMeta 2–38 genes,6

and ClinVar 21 genes78). The GeneEMBED candidates showed

statistically significant diffusion (ROC > 0.5 + Z score > 2) to

most selected AD-associated gene sets, regardless of the

cohort (Figure 3; Table S4; AUROC = 0.63–0.84; Z = 2.03–

5.64). Interestingly, MAGMA candidates also diffused signifi-

cantly to DisGeNet, CTD, and ClinVar, but not to the two

GWAS datasets. These data suggest that the GeneEMBED can-

didates are functionally and significantly connected to previously

curated AD-associated genes, further suggesting an identifica-

tion of disease-relevant signal.

To test GeneEMBED’s utility and robustness in alternate PPI

networks, we replicated the experiments from the above sec-

tions using the HINT network45 of curated high-quality PPIs

and a second network of physical PPIs specific to brain tis-

sue.46,47 First, using the HINT network, only VISEA in Discovery

showed significant recall of genes from the CTD, GWAS Meta

1, and GWAS Meta two references (one-tailed hypergeometric

p = 0.0014, 0.0058, and 0.015) (Tables S5 and S6). However,

nDiffusion found both VISEA and VISPPh2 in Disc were signifi-

cantly connected to all curated gene sets except GWAS Meta

1, with AUROCs = 0.62–0.77 (permutation-based Z score =

2.31–5.77) and AUROCs = 0.62–0.76 (permutation-based Z

score = 2.6–3.89) (Table S7), respectively. VISEA and VISPPh2 in

Extension also had significant network connectivity with CTD

and DisGeNet gene lists with AUROCs = 0.75 and 0.7 (Z = 3.33

and 5.16) and AUROCs = 0.74 and 0.67 (permutation-based Z

score = 3.32 and 4.91).

Alternately, using the brain-specific PPI, both VISEA and

VISPPh2 in Discovery had significant interactions to the curated

gene sets, with AUROCs = 0.63–0.78 (permutation-based Z

score = 2.11–3.91) and AUROCs = 0.64–0.82 (permutation-

based Z score = 2.43–6.07) (Tables S8, S9, and S10). VISEA

in Extension found significant relatedness to CTD and

DisGeNet with AUROCs = 0.77 and 0.69 (permutation-based

Z score = 4.64 and 5.07). VISPPh2 in Extension did not show

any significant links to the curated gene sets. These data

show that GeneEMBED robustly identifies genes enriched for

functional interactions to curated sets of AD-related genes us-

ing a variety of alternative PPI networks. Interestingly, a large

number of genes were repeatedly identified among two or

more GeneEMBED analyses across cohorts, VIS systems,

and PPI networks (Figures S1 and S2; Table S11), suggesting

a potential role in AD.
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Figure 2. GeneEMBED candidates are differentially expressed in AD brain tissue

(A) One-tailed hypergeometric enrichment of GeneEMBED candidates against differentially expressed genes from seven brain regions: cerebellum (CBE), temporal

cortex (TCX), frontal pole (FP), inferior frontal gyrus (IFG), parahippocampal gyrus (PHG), superior temporal cortex (STG), and dorsolateral prefrontal cortex (DLPFC).

(B) Comparison of RNA-sequencing-based enrichment between known AD gene sets and GeneEMBED candidates. Stars indicate the number of brain regions

with significant enrichment in each gene set by permutation testing. Violin plot shows the distribution of expected number of enriched brain regions when using

random gene sets.

(C) Among the 143 high-confidence genes, a significant number (22; one-tailed Fisher’s exact test; p = 0.0247) showed differential expression in both bulk tissue

from various brain regions and in single-cell sequencing of neuronal cell types.
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GeneEMBED candidates are functionally connected and
enriched for in vivo modulators of neuronal dysfunction
triggered by tau and b-amyloid
The significant overlap in GeneEMBED candidate genes

observed across cohorts and networks (Figure S2) indicates

that GeneEMBED may be identifying specific pathways where

an increased concentration of mutational load modulates AD

risk. To investigate this, we performed functional enrichment

analysis. We constructed a network in STRING with 143 high-

confidence hits. These genes were selected using the criteria

that they must have been identified at least twice in the same

network either across cohorts or across VIS methods. Genes

were prioritized based on the degree of overlap across networks

with more recurrent genes ranking higher, provided that they

were never identified in any of the healthy control versus healthy

control assays (Figure S1; Table S11).
Interestingly, this network showed significant PPI enrichment

(STRING PPI enrichment p = 9.56e�07). After clustering with a

Louvain algorithm, 127 of the 143 candidate genes mapped to

significantly enriched pathways (Figure 4), including, among

others, (1) mechanisms involved in glial biology (glial-cell-derived

neurotrophic factor receptor);83,84 (2) inflammation (regulation of

IP-10 production, positive regulation of transforming growth

factor b1 (TGFb1) production, and chemokine signaling), which

is known to be dysregulated in AD;61 (3) clearance of protein

aggregates (regulation of aggrephagy and MTOR signaling);

and (4) extracellular signaling cascades. These cascades

involved Wnt/b-catenin, G-alpha, or ErbB, which are dysregu-

lated in AD63,85 and modulate neurodegeneration in animal

models,86 or Syndecan-3, whichmay play a role in tau and b-am-

yloid internalization.87 (5) The largest functional module among

the high-confidence GeneEMBED candidates is related to DNA
Cell Genomics 2, 100162, September 14, 2022 5
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Figure 3. GeneEMBED candidates are significantly related to curated sets of AD genes
(A) Receiver operator characteristic curves are shown for Disc. VISEA for network diffusion to CTD and ClinVar AD gene sets. To determine significance of

observed area under the curve (AUC), a permutation testing strategy is used wherein random gene sets of the same size are generated 100 times and analyzed

through nDiffusion to create a random distribution of AUCs. Reported Z-scores are calculated relative to these backgrounds. y axis of the ROC plots are true

positive rates (TPRs), and x axis is false-positive rate (FPR). Similarly, y axis of the Z score distribution is probability density, and x axis is the AUROC score

of random gene sets.

(B–D) Analogous plots are shown for (B) Ext VISEA, (C) Disc VISPPh2, and (D) Ext VISPPh2.
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double-strand break repair. Interestingly, genes involved in dou-

ble-strand break repair regulation modulate neurodegeneration

in animal models,59 and others involved in DNA quality control

accumulate in AD brains.

These pathways suggest that modulating GeneEMBED genes

may impact neuronal function. This hypothesis is supported by

the fact that the 143 high-confidence hits are enriched in differ-

entially expressed genes both in bulk and in single-cell transcrip-

tomic datasets from AD post mortem brains (one-tailed Fisher’s

exact test p = 0.0247; Figures 2C and 4).

While many genes have been investigated in AD mouse

models to understand their contribution to disease, it is currently

impractical to perform this type of analysis with large gene col-

lections. To circumvent this limitation and systematically mea-

sure whether GeneEMBED candidates play important roles in

CNS, we asked whether modulation of their mouse homologs

would cause any neurological phenotypes as tallied in theMouse

Genome Informatics (MGI) database.88 This would reveal

whether gene candidates are involved in neuronal maintenance

and function and whether their loss of function may constitute

a risk factor for AD or be a trigger for neurodegeneration.

We found that, out of 139 high-confidence genes with homo-

logs, 48 (35%) showed abnormal nervous system phenotypes

(one-tailed Fisher’s exact test p = 0.00024) when modulated.

Notably, among these, a subset of 25 mouse homologs also

showed abnormal behavioral and neurological phenotypes

(one-tailed Fisher’s exact test p = 0.049). Finally, an additional
6 Cell Genomics 2, 100162, September 14, 2022
11 homologs showed only abnormal behavioral and neurological

phenotypes (Figure 4 shows genes whose modulation causes

CNS-associated phenotypes in mice as red or yellow border no-

des). Of note, neither the ADSP variant datasets nor the STRING

or HINT networks used by GeneEMBED have any bias toward

genes expressed in the brain or in neurons. Therefore, the

observed enrichment in genes mediating normal neuronal func-

tion increases confidence in GeneEMBED and with the potential

pathogenic or protective roles of the genes it finds.

To further ascertain the role of GeneEMBED genes in neurode-

generation, we next turned to in vivo experiments. Mouse

models recapitulate neuronal dysfunction and neuropathological

features of AD; however, they are not amenable for testing a high

number of candidates using functional assays. Conversely,

cultured cells fail to recapitulate core AD traits (age dependence,

circuit dysfunction, and neuron-glia interplay). Therefore, to opti-

mally validate the GeneEMBED candidates in the AD context

in vivo, we resorted to Drosophila AD models, which capture

important core AD traits, including age dependence and protein

accumulation.89 This approach is supported by our previous

Drosophila work in the context of AD and other neurodegenera-

tion disorders, where therapeutic targets identified in Drosophila

have gone on to be validated in mouse or induced pluripotent

stem cell (iPSC)-derived neuronal models.48,49,89–94

For the GeneEMBED candidates, we modulated the levels of

their Drosophila homologs in two well-validated Drosophila AD

models48–50 to test the effect of each candidate on neuronal



Figure 4. Interaction network among 143 high-confidence genes

Network is built using STRING edges. Nodes are colored based on their differential log2 fold change expression in AD brains. Red rings around genes indicate

that they were reported in MGI to have abnormal neurological phenotype when knocked out. Green rings indicate that the gene was observed to modify AD

phenotype in in vivo experiments on AD Drosophilamodels. Yellow rings indicate genes that were observed to both modify AD phenotype in Drosophilamodels

and have reported abnormal neurological phenotype in knockout (KO) mouse models in MGI. Genes with asterisk next to them are those that have pre-existing

FDA-approved pharmacological activator or inhibitors, indicating potential targets for drug-repurposing studies.
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dysfunction caused by amyloid (secreted Ab42) or Tau (2N4R

hTau) in the CNS. Expression of secreted b42 or human tau

specifically in post-mitotic neurons induces progressive

nervous system dysfunction in Drosophila that can be

monitored by measuring the motor performance of the animals

as they age.

First, we filtered out high-confidence candidate genes that

did not have Drosophila homologs or available alleles in public

repositories. We then tested the resulting 43 genes using both

overexpression as well as loss-of-function alleles whenever

possible. We found that 28 Drosophila genes were modifiers

of the b42- and/or tau-induced neuronal dysfunction (Figures 4,

green and yellow border nodes, S3, and S4). We further found

that, of these 28 modifiers, five genes (UTRN, REST, PLEC,

BAG3, and TP53) also showed evidence of dysregulation in hu-

man post mortem AD brain transcriptome and abnormal neuro-

logical phenotypes in knockout mice. Interestingly, both the

MGI hits as well as the Drosophila modifiers are evenly distrib-
uted between the different functional clusters (Figure 4), indi-

cating that all these pathways may potentially modulate AD

pathogenesis.

Importantly, some of the Drosophila alleles used (inducible

overexpression and short hairpin RNA [shRNA] lines) were tar-

geted specifically to neurons and therefore likely exerted their ef-

fects specifically in neuronal cells. However, other alleles used

were classical loss-of-function or classical rescue constructs

(using the endogenous gene promoter); in those cases, the effect

may be cell-autonomous or non-cell autonomous, for example,

through modulation of important functions in glial or muscular

cells. In addition, while some of themodifiers identifiedmay exert

their effect through modulating the accumulation of tau or b42,

others may act by protecting or potentiating the predisposition

of neurons to degenerate or even by causing certain levels of

neurodegeneration themselves. A complete list of the modifier

alleles as well as brief description of their putative effect on their

target gene are available in Table S12.
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Given the likely neurological role of these high-confidence

GeneEMBED candidates, we investigated their therapeutic po-

tential. Among the 143 genes, 21 have drugs that have been

characterized as agonists or antagonists of their function

(Table S13). Interestingly, of the total 109 compounds activating

or inhibiting these genes, 35 have co-mentions with AD in the

PubMed database.

Noteworthy among these druggable candidates are EPHA2

and S1PR3, both of which were upregulated in AD brains.

EPHA2 has two inhibitors (regorafenib and dasatinib), both of

which have shown neuroprotective effects in mouse AD

models.95,96 S1PR3 has an agonist (fingolimod) that also has

therapeutic benefit in mice.97 In addition, two genes, FLT3 and

RET, are inhibited by sunitinib, which inhibits cerebrovascular

activation to improve cognitive function mouse AD models.98

Among the genes whose knockdowns ameliorated neurode-

generation in Drosophila AD models, three (ABL1, TP53, and

POLD1) have pharmacological agents with previously demon-

strated inhibitory effects. While ABL1 inhibition is already being

pursued in the context of AD,99,100 TP53 and POLD1 remain to

be explored. Together, our results demonstrate that high-confi-

dence GeneEMBED candidates show significant enrichment

in modifiers of tau and b-amyloid phenotypes in Drosophila

models, are differentially expressed in AD brain tissue, and

show abnormal neurological phenotypes when modulated

in mouse models. These findings highlight the ability of

GeneEMBED to successfully identify genes involved in disease

pathology, some of which have significant therapeutic potential.

DISCUSSION

AD is the leading cause of dementia worldwide. As its preva-

lence rises, the need to identify therapeutic targets, potential

biomarkers, and risk predictive strategies is urgent. These

tasks are complicated by the fact that, although several AD

genes have been discovered, they only partially account for

the role of genetics in the disease.10,11 Here, we developed

GeneEMBED, a new approach to pinpoint genetic risk factors

of disease by examining the differential perturbation patterns

of gene interactions. Though, in this study, we analyze AD

as proof of concept, GeneEMBED is a general approach appli-

cable to many complex polygenic diseases.

When applied to the ADSP cohorts, GeneEMBED identified

143 candidate genes that interacted significantly with previously

known AD genes (Z score = 2.03–6.07) andwere differentially ex-

pressed in bulk tissue and single cells of AD cases (p = 0.0247).

While testing such a large collection of genes in AD-related

mouse models is currently not possible, we sought to identify

experimental links between the GeneEMBED candidates and

neuronal biology.

We validated candidate genes in vivo using two well-charac-

terized Drosophila AD models and utilized the MGI database to

identify functional links between the GeneEMBED genes and

neurological phenotypes. These genes were also linked to

known AD pathways and revealed several novel and potentially

druggable targets. These pathways included functions related

to glial biology, inflammation, protein aggregate clearance, and

signaling cascades.
8 Cell Genomics 2, 100162, September 14, 2022
While inflammation plays a large role in the pathogenesis of

AD, our enrichments draw attention to the regulation of inter-

feron-gamma-induced protein 10 (IP-10) production. In AD pa-

tients, IP-10 has elevated expression in astrocytes and shows

positive correlation between cerebrospinal fluid (CSF) levels

and cognitive impairment.101 In AD transgenic mice, it co-local-

izes with amyloid plaques.101 Interestingly, among genes

responsible for enrichment in this function, three (NDUFA10,

GOT2, and TLR10) show modulation of an abnormal phenotype

in animal models (Figure 4), while another four (NDUFA10,

NDUFA9, EPHX2, and CYP2C9) have approved pharmacolog-

ical activators or inhibitors (Figure 4).

Functions related to glial biology highlighted glial-cell-derived

neurotrophic factor (GDNF) receptor (GFRa1) signaling. Studies

in transgenic AD mice found that overexpression of GDNF

induced neuroprotective effects and improved learning and

memory.83 Restoration of GDNF effects by introduction of exog-

enous GFRa1 into cortical AD neurons has been shown to alle-

viate neuronal death.84

Strikingly, we found that all eight genes (RET, ROR1, GRIN3A,

PLEC, GFRA1, BAG3, NQ O 1, and BCLAF1) responsible for

enrichment in this pathway showed modulation of abnormal

neurological phenotypes in mice and Drosophila (Figure 4). Of

these, RET, GRINA3, and NQ O 1 all have pharmacological acti-

vators or inhibitors that are US Food and Drug Administration

(FDA) approved. GRINA3, specifically, interacts with acampro-

sate, which has been associated with decreased incidence of

dementia in population studies and has been seen to alleviate

cognitive defects in amyloid precursor protein (APP) transgenic

mice.102,103 Further studies of these gene candidates are needed

to disentangle their relationship with AD; however, they present

interesting and viable targets for potential therapeutic research.

Several GeneEMBED hits represent novel and unsuspected

candidates for AD. Particularly noteworthy were PLEC and

UTRN, which, to our knowledge, have not been studied in AD.

Both genes were repeatedly identified in multiple GeneEMBED

analyses and were significantly upregulated in bulk tissue AD

brains, their modulation causes abnormal neurological pheno-

types in mouse models,104,105 and they are genetic modifiers

of AD-related phenotypes in Drosophila.

PLEC encodes for plectin, a cytoskeletal protein involved in in-

termediate filament networks and interacting with actinomycin

andmicrotubules. Mice deficient in PLEC isoform P1c in neurons

demonstrate altered pain sensation and reduced learning

and long-term memory due to increased accumulation of tau

proteins with microtubules.104 Proteomic studies have also

associated PLEC with AD pathology.106,107 UTRN encodes for

utrophin, another component of the cytoskeletal system. Though

UTRN is downregulated in CA1 neurons containing neurofibril-

lary tangles,108 its role in the development of tangles is still un-

clear. The numerous modalities in which UTRN and PLEC

show associations to AD phenotype warrant deeper and more

detailed studies to unravel their role in the disease.

In a similar vein, we found two additional genes with links to

AD worth highlighting (TP53 and POLD1)109,110 and whose

knockdown in Drosophila alleviated AD-related phenotypes.

Moreover, both of these genes have pre-existing FDA-approved

pharmacological inhibitors. We found four compounds
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(clofarabine, cytarabine, fludarabine, and gemcitabine) that

inhibit POLD1 and one compound (bortezomib) that inhibits

TP53. Given the distinct effects of these genes in animal models

and their druggability, these genes would be priority candidates

for further characterization and study in animal models.

As a genomic tool, GeneEMBED searches for genes that influ-

ence disease risk by consideringmutational perturbations of func-

tion in their molecular interaction network. This is in contrast to

variant or gene-based association methods that treat individual

genes or variants as independent and isolated risk loci.68,111–114

To evaluate the functional perturbation of a gene in a disease,

GeneEMBED integrates two distinct techniques: variant impact

estimators and node-embedding algorithms (Figure 1A).

The first of these, variant impact estimators, predict the prob-

able effect of a coding mutation on protein function based on a

variety of data. EA is an untrained approach that uses the

evolutionary history of sequence variations and phylogenetic

divergence to predict the impact of a variant. PPh2 evaluates

impacts by applying machine learning tools on sequence and

structure features. These estimates are combined across all

variants in a gene to predict their total impact on protein

function.

The second technique, node embedding, is a machine

learning process that seeks to represent the complex topological

properties of a node in an easilymanipulatable form. Byweighing

the interactions of a gene with the sum of its mutational impact

and those of its interactors, GeneEMBED uses the perturbed in-

teractions of a gene as learning features rather than their singular

mutational burden. Combining these features with node embed-

ding allows GeneEMBED to estimate the differential perturbation

of genes in cases versus controls, thereby identifying genes

whose disease contribution would not have been apparent in

single-gene analyses. For example, in AD, the single-gene

approach MAGMA did not identify NQ O 1 (pMAGMA z 0.33) as

disease associated despite its links to AD.115–118 However, its

differentially perturbed network interactions between cases

and controls allow GeneEMBED to identify NQ O 1 with statisti-

cal significance (Figure S5). This suggests that GeneEMBED

identifies genetic processes distinct from those found by stan-

dard tools and can offer complementary insights into the factors

defining complex diseases.

The integrative framework of GeneEMBED provides other

advantages. First, the integration of network information allows

GeneEMBED to be robust to sample sizes. In our analysis of

AD, GeneEMBED was able to reliably reproduce findings from

the full ADSP Discovery cohort with successively smaller

subsampled cohort sizes (Figure S6A). More than that,

GeneEMBEDwas robust to variations between different cohorts,

recovering significant overlaps (p = 1.86e�16 and 4.25e�15) in

genes identified in the ADSP Discovery and Extension datasets,

a challenging task for standard prioritization tools at these sam-

ple sizes. Nevertheless, in order to optimally account for the

various factors leading to inter-cohort variability and increase

robustness of findings, we recommend readers to validate po-

tential candidate gene lists across two or more cohorts.

This framework is also flexible in that it is compatible with

many different variant impact estimators. Here, we used EA

due to its consistently good performance in blind, objective
studies119,120 and overall utility in genomic studies,121,122 in addi-

tion to a well-established alternative, PPh2. Despite their

differences, we found significant overlap in their predictions

(p z 2.46e�64 to 1.46e�53), supporting the compatibility

of GeneEMBED with multiple impact estimators. The

GeneEMBED framework crucially relies on the PS metric, which

is compatible only with estimators that have probabilistic inter-

pretations. While some tools (REVEL, SIFT, MutPred2, or

VEST) fit this criterion, many do not have such interpretations

or may require further transformations (e.g., CADD or Eigen).

The flexibility of the GeneEMBED strategy also applies to

different networks. We found that GeneEMBED consistently

identified similar genes across the three PPI networks used in

this study (p z 1.06e�8 to 5.78e�28; Figure S2), suggesting

that usage of any well-constructed and disease-relevant

network will tend to converge on similar findings. While the use

of networks is key in the GeneEMBED strategy, it also introduces

a potential source of error. Even stringently curated networks

may be prone to research bias. Unbiased networks built with

high-throughput techniques may provide alternatives. However,

they tend to be limited in size due to technical constraints, result-

ing in an insufficient capture of disease-relevant interactions

(STAR Methods; Tables S14, S15, and S16). In this regard, the

GeneEMBED strategy showed robustness to the presence of

both false-positive and false-negative edges (STAR Methods;

Figure S7).

The flexibility of the framework also provides a channel for

improvement in predictive power, namely, the edge-weighting

scheme. While other edge-weighting approaches were charac-

terized (STAR Methods; Tables S13, S14, and S15), the current

framework estimates the perturbation of each interaction inde-

pendently but considers all edges equally important. However,

biological networks are highly robust to mutations due to

pathway redundancies.123,124 Among these, some are domi-

nant while others are auxiliary,125 suggesting that different parts

of the network have varying levels of importance. This indicates

a potential limitation and area for improvement in the

GeneEMBED framework. Potential approaches to address

this are to consider alternative methods of node embedding,

including anisotropic diffusion techniques, which will be the

focus of future work.

Limitations of the study
While we anticipate GeneEMBED to be broadly applicable to

case-control germline studies across a wide variety of complex

genetic diseases, we note that this study is not without limita-

tions. First, though we strove to validate the involvement of

candidate genes in AD biology, further in-depth experimental

characterization is necessary to elucidate their roles in

pathology. Second, while the integration of network data is a

key innovative component of GeneEMBED, it also presents a

limitation. The reliance on network data means that, in the

absence of interactions or genes that may be central to disease

pathology, GeneEMBED may not make informative predictions.

This suggests that GeneEMBED may have limited compatibility

with certain networks (e.g., unbiased networks built on high-

throughput screens). Third, the current implementation of

GeneEMBED considers only coding mutations. However, a
Cell Genomics 2, 100162, September 14, 2022 9
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growing body of literature suggests that non-coding

changes may also play an important role in AD pathology,126,127

as well as other complex diseases. Therefore, extending

GeneEMBED to incorporate non-coding data may be a fruitful

future direction.

Conclusions
In summary, using AD as a proof of concept, we show that, by

placing genes in the context of their network interactions,

GeneEMBED identifies novel disease genes that add to our un-

derstanding of pathology and which may harbor potential thera-

peutic value. This approach is general and can be applied to

other sequenced case-control cohorts of a few thousands of

subjects to decode gene variant interactions of interest in other

complex genetic diseases.
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91. Rousseaux, M.W.C., Vázquez-Vélez, G.E., Al-Ramahi, I., Jeong, H.H.,

Baji�c, A., Revelli, J.P., Ye, H., Phan, E.T., Deger, J.M., Perez, A.M.,

et al. (2018). A druggable genome screen identifies modifiers of a-synu-

clein levels via a tiered cross-species validation approach. J. Neurosci.

38, 9286–9301.

92. Al-Ramahi, I., Lu, B., di Paola, S., Pang, K., de Haro, M., Peluso, I., Gal-

lego-Flores, T., Malik, N.T., Erikson, K., Bleiberg, B.A., et al. (2018). High-

throughput functional analysis distinguishes pathogenic, nonpathogenic,

and compensatory transcriptional changes in neurodegeneration. Cell

Syst. 7, 28–40.e4.

93. Lu, X.H., Mattis, V.B., Wang, N., Al-Ramahi, I., van den Berg, N., Fratan-

toni, S.A., Waldvogel, H., Greiner, E., Osmand, A., Elzein, K., et al. (2014).

Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal

models of Huntington’s disease. Sci. Transl. Med. 6, 268ra178.

94. Park, J., Al-Ramahi, I., Tan, Q., Mollema, N., Diaz-Garcia, J.R., Gallego-

Flores, T., Lu, H.C., Lagalwar, S., Duvick, L., Kang, H., et al. (2013). RAS-

MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in

SCA1. Nature 498, 325–331.

95. Han, K.M., Kang, R.J., Jeon, H., Lee, H.J., Lee, J.S., Park, H.H., Gak

Jeon, S., Suk, K., Seo, J., and Hoe, H.S. (2020). Regorafenib regulates

AD pathology, neuroinflammation, and dendritic spinogenesis in cells

and a mouse model of AD. Cells 9, 655.

96. Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler,

R.G., Zhang, S., Abdelmohsen, K., Bohr, V.A., Misra Sen, J., Gorospe,

M., andMattson, M.P. (2019). Senolytic therapy alleviates Ab-associated

oligodendrocyte progenitor cell senescence and cognitive deficits in an

Alzheimer’s disease model. Nat. Neurosci. 22, 719–728.

97. Angelopoulou, E., and Piperi, C. (2019). Beneficial effects of fingolimod in

Alzheimer’s disease: molecular mechanisms and therapeutic potential.

Neuromolecular Med. 21, 227–238.

98. Grammas, P., Martinez, J., Sanchez, A., Yin, X., Riley, J., Gay, D., Des-

obry, K., Tripathy, D., Luo, J., Evola, M., et al. (2014). A new paradigm

for the treatment of Alzheimer’s disease: targeting vascular activation.

J. Alzheimers Dis. 40, 619–630.

99. la Barbera, L., Vedele, F., Nobili, A., Krashia, P., Spoleti, E., Latagliata,

E.C., Cutuli, D., Cauzzi, E., Marino, R., Viscomi, M.T., et al. (2021). Nilo-

tinib restores memory function by preventing dopaminergic neuron

degeneration in a mouse model of Alzheimer’s Disease. Prog. Neurobiol.

202, 102031.

100. Turner, R.S., Hebron, M.L., Lawler, A., Mundel, E.E., Yusuf, N., Starr,

J.N., Anjum, M., Pagan, F., Torres-Yaghi, Y., Shi, W., et al. (2020). Niloti-

nib effects on safety, tolerability, and biomarkers in Alzheimer’s disease.

Ann. Neurol. 88, 183–194.

101. Zuena, A.R., Casolini, P., Lattanzi, R., and Maftei, D. (2019). Chemokines

in Alzheimer’s disease: new insights into prokineticins, chemokine-like

proteins. Front. Pharmacol. 10, 622.

102. Kern, D.M., Cepeda, M.S., Lovestone, S., and Seabrook, G.R. (2019).

Aiding the discovery of new treatments for dementia by uncovering un-

known benefits of existing medications. Alzheimers Dement. 5, 862–870.

103. Chumakov, I., Nabirotchkin, S., Cholet, N., Milet, A., Boucard, A., Tou-

lorge, D., Pereira, Y., Graudens, E., Traoré, S., Foucquier, J., et al.
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non-coding RNAs and Alzheimer’s disease pathogenesis: pathways,

mechanisms and translational opportunities. Ageing Res. Rev. 71,

101425.

128. Beecham, G.W., Bis, J.C., Martin, E.R., Choi, S.H., DeStefano, A.L., van

Duijn, C.M., Fornage, M., Gabriel, S.B., Koboldt, D.C., Larson, D.E., et al.

(2017). The Alzheimer’s disease sequencing project: study design and

sample selection. Neurol. Genet. 3, e194.

129. Naj, A.C., Lin, H., Vardarajan, B.N., White, S., Lancour, D., Ma, Y.,

Schmidt, M., Sun, F., Butkiewicz, M., Bush, W.S., et al. (2019). Quality

control and integration of genotypes from two calling pipelines for whole

genome sequence data in the Alzheimer’s disease sequencing project.

Genomics 111, 808–818.

130. Luck, K., Kim, D.K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W.,

Brignall, R., Cafarelli, T., Campos-Laborie, F.J., Charloteaux, B., et al.

(2020). A reference map of the human binary protein interactome. Nature

580, 402–408.

131. Bennett, D.A., Schneider, J.A., Buchman, A.S., Barnes, L.L., Boyle, P.A.,

and Wilson, R.S. (2012). Overview and findings from the Rush memory

and aging project. Curr. Alzheimer Res. 9, 646–663.

132. Bennett, D.A., Schneider, J.A., Arvanitakis, Z., and Wilson, R.S. (2012).

Overview and findings from the religious orders study. Curr. Alzheimer

Res. 9, 628–645.

133. Wang, M., Beckmann, N.D., Roussos, P., Wang, E., Zhou, X., Wang, Q.,

Ming, C., Neff, R., Ma, W., Fullard, J.F., et al. (2018). The Mount Sinai

cohort of large-scale genomic, transcriptomic and proteomic data in Alz-

heimer’s disease. Sci. Data 5, 180185.

134. Allen, M., Carrasquillo, M.M., Funk, C., Heavner, B.D., Zou, F., Younkin,

C.S., Burgess, J.D., Chai, H.S., Crook, J., Eddy, J.A., et al. (2016). Human

whole genome genotype and transcriptome data for Alzheimer’s and

other neurodegenerative diseases. Sci. Data 3, 160089.

135. de Jager, P.L., Ma, Y., McCabe, C., Xu, J., Vardarajan, B.N., Felsky, D.,

Klein, H.U., White, C.C., Peters, M.A., Lodgson, B., et al. (2018). A multi-

omic atlas of the human frontal cortex for aging and Alzheimer’s disease

research. Sci. Data 5, 180142.

136. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D.,

Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software

environment for integrated models of biomolecular interaction networks.

Genome Res. 13, 2498–2504.

137. van Rossum, G.; Python Development Team (2017). The Python Lan-

guage Reference (Python Software Foundation).

138. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard,

M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., and Li,

H. (2021). Twelve years of SAMtools and BCFtools. GigaScience 10,

giab008.

http://refhub.elsevier.com/S2666-979X(22)00104-5/sref104
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref104
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref104
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref105
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref105
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref105
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref105
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref106
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref106
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref106
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref106
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref107
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref107
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref107
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref107
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref107
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref108
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref108
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref108
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref108
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref109
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref109
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref109
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref110
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref110
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref110
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref111
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref112
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref112
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref112
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref113
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref113
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref113
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref114
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref114
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref114
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref114
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref115
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref115
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref116
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref116
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref116
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref117
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref117
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref117
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref117
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref118
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref118
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref118
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref119
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref119
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref119
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref120
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref120
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref120
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref121
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref122
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref122
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref122
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref122
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref123
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref123
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref123
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref124
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref124
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref125
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref125
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref125
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref125
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref126
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref126
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref126
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref126
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref127
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref127
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref127
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref127
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref128
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref128
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref128
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref128
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref129
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref129
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref129
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref129
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref129
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref130
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref130
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref130
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref130
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref131
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref131
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref131
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref132
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref132
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref132
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref133
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref133
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref133
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref133
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref134
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref134
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref134
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref134
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref135
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref135
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref135
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref135
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref136
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref136
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref136
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref136
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref137
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref137
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref138
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref138
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref138
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref138


Article
ll

OPEN ACCESS
139. Patterson, N., Price, A.L., and Reich, D. (2006). Population structure and

eigenanalysis. PLoS Genet. 2, e190.

140. Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon,

N., and Mohr, S.E. (2011). An integrative approach to ortholog prediction

for disease-focused and other functional studies. BMC Bioinf. 12, 357.

141. Al-Ramahi, I., Giridharan, S.S.P., Chen, Y.C., Patnaik, S., Safren, N., Ha-

segawa, J., de Haro, M., Wagner Gee, A.K., Titus, S.A., Jeong, H., et al.

(2017). Inhibition of PIP4Kg ameliorates the pathological effects of

mutant huntingtin protein. Elife 6, e29123.

142. Onur, T.S., Laitman, A., Zhao, H., Keyho, R., Kim, H., Wang, J., Mair, M.,

Wang, H., Li, L., Perez, A., et al. (2021). Downregulation of glial genes

involved in synaptic function mitigates Huntington’s disease pathogen-

esis. Elife 10, e64564.

143. Butkiewicz, M., Blue, E.E., Leung, Y.Y., Jian, X., Marcora, E., Renton,

A.E., Kuzma, A., Wang, L.S., Koboldt, D.C., Haines, J.L., et al. (2018).

Functional annotation of genomic variants in studies of late-onset Alz-

heimer’s disease. Bioinformatics 34, 2724–2731.
144. Wigginton, J.E., Cutler, D.J., and Abecasis, G.R. (2005). A note on exact

tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893.

145. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., and

Chen,W.-M. (2010). Robust relationship inference in genome-wide asso-

ciation studies. Bioinformatics 26, 2867–2873.

146. Lichtarge, O., Bourne, H.R., and Cohen, F.E. (1996). An evolutionary

trace method defines binding surfaces common to protein families.

J. Mol. Biol. 257, 342–358.

147. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Ce-

pas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al.

(2019). STRING v11: protein–protein association networks with

increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Res. 47, D607–D613.

148. Freshour, S.L., Kiwala, S., Cotto, K.C., Coffman, A.C., McMichael, J.F.,

Song, J.J., Griffith, M., Griffith, O.L., andWagner, A.H. (2021). Integration

of the drug-gene interaction database (DGIdb 4.0) with open crowd-

source efforts. Nucleic Acids Res. 49, D1144–D1151.
Cell Genomics 2, 100162, September 14, 2022 15

http://refhub.elsevier.com/S2666-979X(22)00104-5/sref139
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref139
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref140
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref140
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref140
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref141
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref141
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref141
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref141
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref142
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref142
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref142
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref142
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref143
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref143
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref143
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref143
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref144
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref144
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref145
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref145
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref145
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref146
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref146
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref146
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref147
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref147
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref147
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref147
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref147
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref148
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref148
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref148
http://refhub.elsevier.com/S2666-979X(22)00104-5/sref148


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ADSP - Discovery Cohort Whole Exome

Sequencing data

Alzheimer’s Disease Sequencing Project

(128)

phs000572.v8.p4; https://www.ncbi.nlm.

nih.gov/gap/

ADSP – Extension Cohort Whole Genome

Sequencing data

Alzheimer’s Disease Sequencing Project

(129)

https://www.niagads.org/adsp/content/

home

Post-mortem differential expression data

for Alzheimer’s disease

Accelerating Medicines Partnership –

Alzheimer’s Disease (130–135)

https://doi.org/10.7303/syn9702085

Mouse Genome Informatics (MGI) database Bult et al. (88) http://www.informatics.jax.org/

Drug-Gene Interaction database (DGIdb) Freshour et al. (136) https://www.dgidb.org

STRING protein-protein interaction network Szklarczyk et al. (44) https://string-db.org/

HINT protein-protein interaction network Das et al. (45) http://hint.yulab.org/

Brain specific protein-protein interaction

network

Green et al.(46), Zitnik et al. (47) http://snap.stanford.edu/ohmnet/

Experimental models: Organisms/strains

D. melanogaster: UAS-Tau Lasagna-Reeves et al. (49), Bloomington

Drosophila Stock Center

BDSC strain#: 51363

D. melanogaster: UAS-Aos:b Chouhan et al. (50), Bloomington Drosophila

Stock Center

BDSC strain#: 33769

Software and algorithms

Python 3.7 Python Software Foundation (137) https://www.python.org/

GraphWave Donnat et al. (51) https://github.com/snap-stanford/

graphwave

PolyPhen 2 variant impact scores Adzhubei et al. (43) http://genetics.bwh.harvard.edu/pph2/

dokuwiki/start

Evolutionary Action variant impact scores Katsonis et al. (42) http://lichtargelab.org/software/

dashboard/

BCFTOOLS Danecek et al. (138) https://samtools.github.io/bcftools/

bcftools.html

Eigenstrat Patterson et al. (139) https://reich.hms.harvard.edu/software

MAGMA De Leeuw et al. (68) https://ctg.cncr.nl/software/magma

GeneEMBED This study https://github.com/LichtargeLab/

GeneEMBED

https://doi.org/10.5281/zenodo.6654182
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Olivier

Lichtarge (lichtarg@bcm.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d The code generated during this study is available at https://github.com/LichtargeLab/GeneEMBED (https://doi.org/10.5281/

zenodo.6654182).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains and neuronal dysfunction assay
Genetics and strains

Drosophila lines carrying UAS-Tau, and UAS�Aos:b42 have been previously described49,50 and are available from the Bloomington

DrosophilaStockCenter (BDSC, University of Indiana). For postmitotic pan-neuronal expressionwe used the elav-GAL4(C155) driver

from BDSC. The alleles tested as potential modifiers targeting the Drosophila homologs of GeneEMBED candidate genes were

obtained from the BDSC. Homologs were identified using BLAST and also the DRSC Integrative Ortholog Prediction Tool (Diopt

score)140,141(Table S12). For the neuronal dysfunction tests, we used a highly automated behavioral (motor performance) assay

based on the Drosophila startle-induced negative geotaxis response as previously described.141,142 To assess motor performance

of fruit flies as a function of age, we used 10 age-matched virgin females per replica per genotype. Four replicates were used per

genotype. Flies are collected in a 24-hour period and transferred into a new vial containing 300mL of semi defined media

(20g yeast, 20g Tryptone, 30g sucrose, 60g Glucose, 0.5g MgSO4̂ 7H2O, 0.5g CaCl2̂ 2H2O, 80g Inactive Yeast, 1L H2O) every

day. Using an automated platform that uses a mechanized arm and clamp (https://nri.texaschildrens.org/core-facilities/

high-throughput-behavioral-screening-core), the animals are tapped to the bottom of a plastic vials to trigger their negative geotactic

response (climbing response) and are recorded for 7.5 seconds as they climb on the walls of transparent plastic vials. Videos are

analyzed using customsoftware (code available for downloadon ref. 141) that assignsmovement trajectories to each individual animal,

assesses their speed (mm/s) and returns an average per replicate per trial. Three trials per replicate are performed each day shown,

and four replicates per genotype are used. A mixed effect model analysis of variance using spline regressions was run on Rstudio,

using each four replicates to establish statistical significance across genotypes.142 Human genes POLD1 and ANLN were identified

as modifiers in a separate manuscript currently under revision and were not directly tested here. All shown modifier alleles had a sig-

nificant effect (p <0.01) compared to the disease controls.

METHOD DETAILS

Whole exome/genome sequencing data
Whole exome sequencing (WES) data from 5,169 individuals were downloaded from NIH NCBI study ID: phs000572.v8.p459 (ADSP

Discovery)128 and a further 969 whole genome sequences (WGS) were downloaded from National Institute on Aging Genetics of Alz-

heimer’s Disease Data Storage Site (NIAGADS) dataset: NG0006760 (ADSP Extension).129 Samples making up the Discovery and

Extension cohorts were selected from a set of 24 well characterized cohorts from the Alzheimer’s Disease Genetics Consortium.

The sample phenotypes were coded as 0 or 1 indicating non-AD and AD, respectively in both cohorts. Only samples of

European/White ancestry were used in the analyses of both cohorts. The mean age of AD onset for AD positive Discovery cohort

samples was 75.3 years with a standard deviation of 8.3 years, while the mean age of last exam for control samples was 85.5 years

and a standard deviation of 5.1 years. The mean age of AD onset for AD positive Extension cohort samples was 75.5 years with a

standard deviation of 7.8 years. Healthy controls of the Extension cohort had a mean age at last exam of 75 years with a standard

deviation of 8.3 years.

Quality control and annotation of WES and WGS data

Although extensive QC procedures were performed on theWESDiscovery andWGS extension cohorts by the ADSP andGCAD con-

sortia,143 respectively, we generated QC statistics for Ti/Tv, number of variants, singletons, and missingness for each sample and

HWE, genotyping rate (AC/AN) for each variant site across cases and controls. Then, potentially false-positive variants sites and

outlier samples were removed. HWE (Hardy Weinberg Equilibrium) exact test144 was performed on the control samples of each

cohort and the variants with HWE violations (HWE p-value < 5E-8) were removed.We also removed the variants that were genotyping

rate less than 0.95 in either case and control and in combined case and control samples. Outlier samples including potentially non-

whites were identified based on Ti/Tv, total number of variants, singletons, and missingness. To cluster samples with genetic back-

ground and identify outliers of clusters, we applied Principal Component Analysis (PCA) method. We identified potentially related

samples by estimating genetic relationships between samples with kinship coefficients. We removed outliers that include non-Eu-

ropean descendants. To annotate consequences of variants, we used the Annovar133. Then, non-synonymous single nucleotide

variants (SNVs) and small indels, which lead to frames-shift, excluding CNVs (copy number variants) were annotated with EA.

BCFTOOLS,138 KING,145 and SMARTPCA from Eigenstrat package were used for calculating variant and sample statistics, inferring

relationships, and for estimating sample clusters with PCA,139 respectively.

Variant scoring methods
Two variant scoring methods were used to describe the mutational impact of variant, separately. The first of these two methods are

PolyPhen2 (PPh2), which predicts the potential impact of an amino-acid substitution on protein function using a machine learning

algorithm trained on sequence and structural information. Here, PPh2 HDIV raw scores were used. PPh2 scores range from 0–1,

where increasing value indicates increasing severity of mutation.

The second scoringmethodwe usedwas Evolutionary Action (EA), which expresses that the genotype-phenotype relationship can

be written as fðgÞ = 4, where evolutionary fitness function (f) maps genotype (g) onto fitness landscape (4). SNVs are considered
Cell Genomics 2, 100162, September 14, 2022 e2

https://nri.texaschildrens.org/core-facilities/high-throughput-behavioral-screening-core
https://nri.texaschildrens.org/core-facilities/high-throughput-behavioral-screening-core


Article
ll

OPEN ACCESS
small perturbation in the genome (dg) and cause perturbation in fitness ðd4Þ : Vf$dg = d4. A missense mutation at residue rj; dgz
Drj, will cause all components of Vf to be forced to zero except vf

vrj
, and impact equation simplifies to D4z vf

vrj
Dg. Evolutionary

Trace146 is used to compute vf
vrj
, and Dg can be approximated with amino acid substitution log-odds ratios. EA scores are reported

between 0-1 with increasing severity of functional impact, where EA = 0 indicates no effect on protein function and EA = 1 indicates

loss of function. In the EA scoring systems, silent mutations are given a score of EA = 0, while frameshift and stopmutations are given

a score of EA = 1.

GeneEMBED
Network construction

In the bulk of the work presented here, we use three biological networks for protein-protein interactions including STRING

v10 44, HINT,45 and a brain specific network.46,47 The STRING network defines edges between genes using many forms of ev-

idence including curated interactions, experimental interactions, protein homology, co-expression, text mining, etc. The HINT

network consists of manually and systematically curated edges requiring interactions to have been reported at least twice in

literature. The brain specific network consists of genes who demonstrate tissue specificity per Human Protein Reference data-

base and BRENDA Tissue ontology. Edges in the brain specific network are listed only if there is experimental evidence for an

interaction. For in-depth construction details, please see the appropriate publications. For use in this approach, all edge con-

fidence scores in all networks were removed and replaced with a weight of 1, simply indicating an edge exists between two

genes.

Networks are first made sample specific by integrating mutational information. First we compile the functional effect of a set of

variants in an individual into one gene level score called a perturbation score (PS), defined as:PSgene = 1 �
Yv

i

ð1 � VISÞzyg, where

v is the number of variants in a gene for the individual, i is the index over those variants and zyg ˛ f0;1;2gwhere 0 denoteswild type, 1

denotes heterozygous, and 2 denotes homozygous for variant i, and VIS denotes functional impact of variant (EA or PPh2 score). To

construct sample specific networks, we calculate edge weights as the sum of the PS of the two connected genes:Wedge = jPSx +

PSy

��. Characterization of alternative edge weighting schemes and their corresponding discussions can be found below and

Tables S17, S18 and S19. Finally, to construct disease and control specific networks, edge weights are averaged over all cases

and controls separately to build a case specific and control specific mutation weighted network.

Node embedding algorithms

In order to assess network perturbations in genes between cases and controls, we use the GraphWave algorithm51 to generate

node embeddings. The GraphWave algorithm has advantages over other embedding algorithms in that it provides rigorous math-

ematical guarantees on identifying structure preserving embeddings. GraphWave performs unsupervised node embedding on

node structure (i.e. topological patterns of node connectivity). Accordingly, the authors provide proof for the equivalency of em-

beddings between two structurally identical nodes a and b, which rests on the assumption that there exists a one-to-one mapping

between the K-hop neighborhood of the two nodes. We can extend this proof to claim that the embeddings of a node from two

identical graphs must also be equivalent since there will exist a mapping between the node neighborhoods. Thus, when

comparing disease and healthy graphs wherein the node connectivities are largely unchanged, the descriptive features captured

by each dimension in the embedding space are the same, thus allowing for direct comparisons. The GraphWave algorithm is

briefly described below.

Let V denote the eigenvectors and ln denote the eigenvalues ðL = diagðl1; l2;.; lnÞÞ of the graph Laplacian L = D � A =

VLVT , where D denotes the degree matrix and A denotes the adjacency matrix of the graph. Now consider a low-pass filter kernel

gs = e� ls, where s is some scaling factor, we may define spectral graph wavelets by modulating the graph Laplacian by kernel gs:

Ja = VLðgsðl1Þ;.;gsðlnÞÞVTda

where da is a Dirac signal about node a,Ja is an n-dimensional vector representation of the spectral graph wavelet of node a, and s is

a scaling factor corresponding to the radius of the neighborhood around node a. GraphWave samples over a set of sj for sj ˛
fsmin; smaxg where smin and smax are automatically calculated.

We can recover coefficients of the graph spectral wavelet Ja corresponding to a neighbor node m by:

Jma =
XN

i = 1

gsðliÞVmiVai

WhereJma represents the signal received by node a from a neighbor nodem, and Vmi, Vai denote the i-th value of the eigenvectors of

m and a. Similarities in node characteristics are carried inJma coefficients. GraphWave proposes to use theJma coefficients as com-

ponents of a characteristic function, which, when sampled at d evenly spaced points, allows a 2-d representation of Ja:

4aðtjÞ =
1

N

XN

m = 1

eitJma
e3 Cell Genomics 2, 100162, September 14, 2022
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where tj comes from the set of d evenly spaced points ðft1;t2;.;tdgÞ, and i is the imaginary unit ði =
ffiffiffiffiffiffiffiffi� 1

p Þ. The final embedding of

the node is then collected as:

Xa = ½Reð4aðtjÞÞ; Imð4aðtjÞÞ�t1 ;::td

Gene identification
In order to find genes with differentially perturbed network characteristics between case and control, GraphWave is applied to both

networks. Each gene will now have two embeddings, one corresponding to the case network and another from the control network.

The GeneEMBED hypothesis supposes that genes contributing to disease will have significantly differing case and control embed-

dings. To prioritize genes accordingly, we perform principal component analysis (PCA) on the node embeddings and measure dis-

tances between case and control embeddings in the PCA space. The role of PCA in the methodology is to aid in denoising the full

dimensional embeddings retrieved by GraphWave. The full dimensional embeddings produced by the algorithm can encompass sig-

nals ranging from immediate neighborhoods to the complete graph. As a result, the full dimensional embedding of a node will be influ-

enced by any change in the edge weight anywhere in the graph. In order to remove some of these noisy influences, we perform a PCA

on the full dimensional embeddings and use the first principal component to measure distances as this component recovers between

78-92% of the variability explained. Characterization of performance between distances computed on full dimensional embedding

against distances measured on PCA is shown in Tables S17, S18 and S19 and discussed further below. By defining distances as

the square root of the L2-norm of each gene measured between case and control, we are able to reconstruct a gaussian-like distribu-

tion from the positive and negative values. We then compute z-scores and their corresponding one-tailed Z-test p-values for each dis-

tance value relative to the full distribution. Then, we perform false discovery rate (FDR) corrections on the p-values using the Benjamini-

Hochbergmethod and genes corresponding to distance values passing FDR<0.01 are selected as pre-candidate genes. Lastly, the full

GeneEMBED process is performed on healthy controls vs healthy controls (details of healthy control selection are discussed below).

Genes passing FDR <0.01 threshold in this control vs control analysis are removed from the list of pre-candidate genes. This is done to

filter potential sources of variation which may not be disease specific (false positives, discussed below, Tables S20 and S21). The final

set of genes passing FDR <0.01 threshold and not removed by control vs control analysis are considered candidate genes.

Computational efficiency/requirements

GeneEMBED offers an analytical framework to appraise all coding genes in the human genome with respect to their attributes in a

molecular network. Accordingly, this can be computationally demanding depending on the size of the network being used. In this

study we used three different PPI networks, a brain specific network, HINT, and STRING. After annotation and preprocessing of exo-

mic variant calling file (VCF), the computational time required for the brain network consisting of 3.2k nodes and 48k edges was 649

seconds (10.8 minutes). Similarly, for the HINT network consisting of 12.6k nodes and 146k edges, the computational time from

annotation of networks with mutational information to identification of candidate genes was 3058 seconds (51 minutes). Lastly,

for the STRING network consisting of 15k nodes and 1.9m edges, the computational time was 6.2 hours. All network analyses

were performed on a server with specifications of Intel Xeon Gold 5222 CPU at 3.8GHz with 8 cores and 348gb RAM.

GeneEMBED is implemented in python 3137 and is publicly available as noted in the Data and Code Availability section.

Use of PCA vs full embedding distances
In order to assess the effects of PCA on the GeneEMBEDmethodology, we tested the utility of computing distances based on the full

dimensional embedding outputs from the GraphWave algorithm compared to PCA-distances. We ran GeneEMBED with both

weighting metrics on the Discovery-VISEA cohort using the STRING network and recovered 82 genes with full embedding distances

and 69 with PCA-distances. To test the relevance of the identified gene to AD, we measured their: (i) recovery of AD-associated

genes, (ii) connectedness to known AD-associated genes, and (iii) differential expression in postmortem AD brains. We found that

distances based on full dimensional embeddings were able to recover statistically significant overlaps (one-tailed hypergeometric

test) with GWAS Meta 1, GWAS Meta 2, and DisGeNet. PCA-distance gene set recovered significant overlaps with DisGeNet and

CTD (Table S13). Next, we found that genes identified by full dimensional embeddings were significantly connected to GWAS

Meta 1, GWAS Meta 3, and CTD gene sets. Comparatively, PCA-distance gene set showed significant connectivity to all five refer-

ence gene sets (Table S14). Finally, genes identified by full dimensional embeddings showed no statistically significant enrichment for

differential expression in post-mortem AD brains, while PCA-distance gene set was enriched in two brain regions with significance

(permutation-based Z-test p = 0.012) (Table S15). These data show that distances based on PCA performs better than full dimen-

sional embeddings. Further examination of the genes identified by both approaches showed that 74% of genes identified by the

full dimensional embeddings were also identified in the PCA-distance framework. However, of the 20 genes unique to the full dimen-

sional embeddings’ gene set, only 3 were dysregulated in AD brains. Comparatively, of the 7 genes unique to the PCA-distance

framework, 4 were dysregulated in AD brains. Overall, this demonstrates the role of principal component analysis in denoising the

raw outputs of the GraphWave algorithm.

Downsampling analyses
While large sequencing cohorts are becomingmore commonplace in recent years, for some rarer phenotypes and diseases, it is still a

challenge to produce such sample sizes. In order to characterize its performance at various cohort sizes, we performed an iterative
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downsampling analysis of GeneEMBED (detailed in methods) on the Discovery cohort. Using the gene set identified with the full

cohort as ground truth, we calculated precision and recall of GeneEMBED gene sets identified at sub-cohort sizes of 80%, 60%,

40%, 20%, 10%, and 5% of the original cohort. Performing this experiment with both EA and PPh2, we found that sub-cohort

size could be dropped as far as 40% of the original cohort before recall fell below 0.6 for PPh2 and EA analyses (Figure S6A).

Next, we examined the relationship between network connectivity and gene identification by GeneEMBED at various cohort sizes.

We correlated the PCA-distances based ranking of identified genes with their ranking by betweenness, degree, and eigen centrality

using STRING network. Wemeasured correlation with the Spearman rank-order correlation test. We found that for both EA and PPh2

based analyses, the correlation with these centrality measures was relatively stable regardless of the decrease in cohort size (Fig-

ure S6C). Together, these data suggest that the utility of GeneEMBED is not limited to large cohort sizes but can sufficiently extended

to much smaller cohort sizes.

Negative control experiment
In order to characterize the behavior of GeneEMBED in the absence of disease specific mutational information, we performed the

analysis on only healthy controls from the Discovery cohort. Healthy samples were defined to be individuals, from the ADSP Discov-

ery cohort, who were homozygous for the APOEε3 variant, and had low BRAAK staging (1 or 2). This filtering resulted in 725 control

samples which were randomly split into two groups. We then tested the Spearman rank-order correlation of genes which pass FDR

threshold with ranks generated by connectivity measures used above. Strikingly, we observed that in GeneEMBED analysis using the

STRING network, the PCA-distances correlatedwith degree, betweenness, and eigenvector centralities atmore than twice the rate in

healthy vs healthy (r = 0.273, 0.215, 0.282) than in case vs control analyses (r = 0.121, 0.085, 0.103), and that correlations for healthy

vs healthy were all statistically significant while the case vs control analyses were not (Figure S6B). Even more notable were the

disparities of correlations in the Brain Specific PPI network, correlations with degree, betweenness, and eigenvector centralities

in the healthy vs healthy analysis (r = 0.596, 0.481, 0.630) which were all statistically significant and case vs control analyses

(r = 0.111,0.358,-0.103) which were not significant. These findings were again echoed in the HINT network analyses where healthy

vs healthy gene set correlated significantly with network centrality measures. The findings suggest that in the absence of disease-

relevant mutational data, GeneEMBED prioritizes genes with large network connectivity as small mutational differences are likely

amplified by the gene’s network influence.

Characterizing alternative weighting schemes
In order to characterize the performance gain or drop-off of GeneEMBED to differences in edgeweighting schematics, we tested two

alternative weighting approaches. The first alternative approach was to assign the edge weight between two nodes as the maximum

PS score between them (max(PS)). The second approach was to assign edge weight between two nodes based on a PS threshold. If

either one of the connected genes had a PS above PS > 0.7 threshold, then the edge is considered dead, otherwise the weight is

determined by the previous method. We ran GeneEMBED with both weighting metrics on the Discovery-VISEA cohort using the

STRING network and compared outputs with the original framework which uses sum(PS). We recovered 73 genes from max(PS)

and 72 genes from PS threshold. Interestingly, nearly 90% of identified genes overlapped with the sum(PS) based gene set. To

test the relevance of the two gene sets to AD, we measured their: (i) recovery of AD-associated genes, (ii) connectedness to known

AD-associated genes, and (iii) differential expression in postmortem AD brains. Both max(PS) and PS threshold schemes recovered

statistically significant overlaps in the DisGeNet reference gene set (Table S13). Comparatively, the current weighting scheme,

sum(PS), recovered similar statistically significant overlaps in DisGeNet as well as significant overlaps with the CTD gene set.

Next, max(PS) showed significant diffusion to ClinVar and GWAS Meta 1 gene sets, while PS threshold showed significant diffusion

to all gene sets except CTD (permutation-based Z-test, Table S14). Comparatively, sum(PS) showed statistically significant diffusion

to all gene sets. Lastly, we found that genes identified by max(PS) were enriched for differential expression in one brain region out of

seven, though this was not significant (permutation-based Z-test p = 0.076). The genes identified by the PS threshold scheme, like

sum(PS), were enriched for differentially expressed genes in two brain regions (permutation-based Z-test p = 0.0014 and 0.012

respectively) (Table S15). These data suggest that though the three weighting schemes overlap in close to 90% of their identified

genes, sum(PS) performs better than alternative weightingmethods. This is because sum(PS) allows each interaction to be described

independently. For example, consider a protein with many interactions. If the protein has a mutation in some binding site, this may

lead to a high PS due to the inactivation of the binding site. In this case, the interaction between the protein and any interactor which is

mediated by the mutated binding site is significantly perturbed. However, this does not necessarily mean that the protein’s interac-

tions mediated by other unaffected binding sites are perturbed to the same degree. Sum(PS) allows for this flexibility while the other

weighting schemes do not, which leads to its improved performance.

Sensitivity to false negative/positive edges
While the curation of biological networks has become increasinglymore sophisticated, it is important to recognize that even networks

built upon stringent curation of experimentally validated edges may be prone to research bias. In order to characterize the sensitivity

of GeneEMBED to false negative/positive edges, we applied GeneEMBED to the Brain Specific network while iteratively deleting (or

adding) edges. Candidate genes identified by GeneEMBED on the unmodified Brain network using the Discovery-VISEA cohort were

used as ground truth for comparison.
e5 Cell Genomics 2, 100162, September 14, 2022



Article
ll

OPEN ACCESS
Sensitivity of GeneEMBED to false negative edges was assessed by iteratively and randomly deleting edges in the brain network in

increments of 5% from 5% to 70%. At each increment, GeneEMBEDwas applied to themodified Brain network and identified candi-

date genes were used to measure recall and precision relative to ground truth as defined above. We found that up to 55% of the

edges in the original network could be randomly deleted before either recall or precision fell below 0.6 (Figure S7A). Moreover,

whenwe restricted randomdeletion of edges to those involving any of the genes identified in the unalteredBrain specific PPI network,

we found that up to 30% of their edges could be deleted before either recall or precision fell below 0.6 (Figure S7A).

Sensitivity of GeneEMBED to false positive edges was assessed by iteratively and randomly adding edges to the Brain network in

increments of 5% from 5% to 110%. Percentage is measured relative to the size of the unmodified Brain network and the pool of

possible edges to add was taken from the full set of edges required to make the network fully connected. Recall and precision of

candidate genes identified on the modified network are measured in the same manner as specified above. We found that we could

randomly add edges totaling up to 80% of the original network size (�38.4k edges) before either the precision or recall fell below 0.6

(Figure S7B).

These data suggest GeneEMBED is highly robust to both false positive and false negative edges. In the case of random deletion of

edges (FN edges), it is likely that there are more genes that do not play a role in AD pathobiology than genes that contribute signif-

icantly to pathogenesis. Accordingly, there will be more edges that are not associated with AD than edges that are associated with

AD. Therefore, it is possible to randomly delete a large number of edges while maintaining a high recall and precision. However, when

there is a bias in the edge deletion process to informative edges, the methodology becomes more sensitive to FN edges. Similar

reasoning can be applied to the case of random edge addition (FP edges), as there are likely more edges that are not associated

with AD it is possible to have large numbers of FP edges before recall or precision drop below 0.6. Overall, these data show that while

there may be potential research bias in curated biological networks, the strategy employed by GeneEMBED allows for its robustness

to the presence of false positive and false negative edges.

GeneEMBED performance in an unbiased network
In order to benchmark the GeneEMBED strategy with a network without any functional bias or literature curation, we employed the

HuRI network.130 The HuRI network is the largest unbiased interactomemap of binary protein-protein interactions. The network con-

tains 8,275 nodes and 52,569 edges generated from an impressive array of nine different ‘all-by-all’ screens of 17,408 proteins. Using

this network as a starting point, we ranGeneEMBED using theDiscovery-VISEA cohort and identified a candidate gene set. To test the

relevance of the identified genes to AD biology, we examined: (i) direct overlaps with reference gene sets discussed previously, (ii)

connectedness between reference gene sets and identified genes, and (iii) dysregulation of identified genes in postmortem AD and

non-AD samples from the AMP-AD dataset. Performing these experiments, we found that there was no significant recovery of known

AD-associated genes. We also found no significant preferential connectivity between candidate genes and known AD-associated

genes (Tables S16 and S17). We did find an enrichment of the candidate genes for differentially expressed genes in AD vs non-

AD brains with marginal significance (permutation-based Z-test p = 0.06) (Table S18). While these results would seem to suggest

that GeneEMBED is unable to perform on such unbiased networks, it is important to consider the HuRI network in the context of

AD. Despite being the largest of its kind to date, due to technological limitations, the HuRI network comprises only half the exome.

Accordingly, only half or less of the genes in the reference gene sets were present in the HuRI network. Indeed, several genes which

are core to AD pathobiology, such as APOE, TREM2, or MAPT, were absent in HuRI. The stringency of the HuRI network’s construc-

tion suggests that while it has a low FP rate, it may be depleted in protein-protein interactions. Indeed, we have observed that

GeneEMBED is more robust to FP edges than FN edges (Figure S7). Overall, these data emphasize the importance of appropriately

selecting a starting network. While it is recommended to use an unbiased network when possible, it is also crucial to ensure the

network is reflective of the biology of the target disease.

Shuffled label experiments
In the presence of counterproductive mutational data and large influence from network inputs, similar genes will be recovered from

various shuffled label experiments leading to inflated overlaps. Indeed, it is likely that due to ambiguousmutational input the identified

overlapping genes from randomly shuffled trials are less related to AD than case vs control overlaps. Moreover, the large reliance on

network information suggests that identified gene lists may be strongly correlated with network connectivity. To test this hypothesis,

for VISEA and VISPPh2 separately, we shuffled the labels (case or control) of individuals in both cohorts and applied GeneEMBED,

repeating this 5 times due to computational time of the approach. We then measured, the number of genes overlapping between

GeneEMBED applied to shuffled Discovery cohort and shuffled Extension cohort, giving 25 pairwise comparisons.

We found that for VISEA, an average of 31.7 genes overlapped among gene sets identified using label shuffling for the Discovery

and Extension cohorts. Comparatively, an overlap of 14 genes was observed in the original framework after removing potential FPs

from control vs control analysis. Importantly, we found that the 14 genes identified in the original analysis showed significant hyper-

geometric overlap with all five of the reference gene sets of known AD-associated genes (p = 0.019–0.0039). The overlaps identified

by shuffled labeling showed few to no significant overlaps with any of the five reference gene sets (Table S19). Next, to further assess

the relationship of the identified overlaps to AD, we performed literature curation analyses. For each gene in a gene set, we queried

the PubMed database for publications co-mentioning the genes with AD in abstracts. Genes were only considered related to AD if

they had at least 5 co-mentions. Statistical significance was determined using a permutation testing strategy. We randomly
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generated 50 gene sets of the same size and counted the number of genes that were related to AD.We thenmeasured the z-score of

the observation relative to the background. We found that the original observation of 14 overlapping genes had a z-score of 6.86.

Comparatively, the overlaps identified by random shuffling had an average z-score of 3.43 and stdev of 1.57. Lastly, we found

that ranked gene lists derived from random shuffling were significantly correlated with degree centrality (Pearson correlation

coeff. = 0.2–0.36, p = 0.037–1.7e-5), whereas the gene list derived from case vs control analysis was not correlated with Pearson

correlation coefficient of 0.085 and a pvalue = 0.43.

Similarly, in VISPPh2 analysis, an average of 37.5 genes overlapped among gene sets identified by label shuffling. In contrast, 16

genes were found overlapping between Discovery and Extension cohorts using the original framework after removing potential

FPs. While no significant overlaps were observed with the reference gene sets (Table S20), we found that the PubMed literature cu-

ration analysis showed significant association of overlap genes identified from case vs control analysis to ADwith a z-score of 4.49. In

comparison, overlaps obtained from label shuffling had an average z-score of 0.97 and stdev of 0.82. These data suggest that over-

laps observed between Discovery and Extension cohorts in the original analysis are much smaller than expected by label shuffling

trials. Despite these large differences in sizes, overlaps from the original framework are more related to AD. Further, they tend to rank

genes independently of their pure connectivity, whereas label shuffling leads to a heavy dependence on network information. Overall,

these observations demonstrate that during a lack of informative mutational data, GeneEMBED will tend to depend heavily on

network information, identifying genes which are less relevant to AD than genes identified through productive (case vs control) muta-

tional data.

MAGMA analyses
We used MAGMA as a methodological control and analysis was performed on the same datasets. The variants were annotated with

each corresponding NCBI reference genes of GRCh37 or 38. Next, we calculated each gene’s one-sided regression p-values based

on the snp-wise Mean model with a ‘–burden flag’ to avoid deteriorating power of extreme rare alleles and the allele frequency

threshold ‘0.1’. A threshold of p < 0.001 was used because the FDR thresholds resulted in too few genes for meaningful comparison

to GeneEMBED.

Recall of known AD genes
To test whether our approach could recover known genes related to AD we assessed direct overlaps. five gene sets were used to

define known AD related genes: Comparative Toxicogenomic Database (CTD) gene set of 103 AD related genes,71 a set of 25 genes

identified bymeta-analysis of large scale GWAS of diagnosed AD (GWASMeta 1),5 a set of 38 genes identified by another meta-anal-

ysis of AD GWAS studies (GWASMeta 2),6 a set of 208 genes with associations to AD fromDisGeNET (DGN),70 and a set of 21 genes

acquired from the ClinVar database.78 Significance of direct overlaps was assessed with one-tailed hypergeometric tests between

sets of known AD genes and candidate gene sets.

Network analyses
nDiffusion82 was applied to measure how well GeneEMBED candidates were connected to known AD genes (defined above).

nDiffusion relies on graph information diffusion methods79–81 wherein signals are propagated from genes of interest to all genes

in a network through their connections. Genes that receive more signal are more connected to genes of interest. Therefore, if

known AD genes receive more diffusion signal from GeneEMBED candidates than other genes in the network, they are more con-

nected. This diffusion connectivity is quantified by measuring the area under receiver operating characteristic curve (AUROC).

nDiffusion also selects random sets of genes with similar degrees of connectivity as genes of interest and measures their

AUROC. This permutation is performed 100 times to produce a background random distribution of AUROC, from which z-scores

of the experimental observation are calculated using a one-sided Z-test. Two sets of genes are then deemed significantly con-

nected if their AUROC is >0.5 and has a z-score > 2. The nDiffusion webtool was used to perform these analyses with the preset

default settings.

RNA sequencing analysis
In order to assesswhether expression changesofGeneEMBEDcandidates inADbrain tissue,weused theAMPADdata sets.74,131–135

Significant differentially expression (DE) was defined, per brain region, as genes which had log2(fold-change) > 0.263 or log2(fold-

change) < 0.263 and FDR <0.05, as measured by AMPAD. This thresholding provided 1880 DE genes for cerebellum (CBE), 2952

genes for temporal cortex (TCX), 56 genes for frontal pole (FP), 73 genes for inferior frontal gyrus (IFG), 1579 genes for parahippocam-

pal gyrus (PHG), 271 genes for superior temporal gyrus (STG), and 161 genes for dorsolateral prefrontal cortex (DLPRC). AD case

versus non-AD control differential expression analysis results from all brain regions listed above are available online (https://doi.

org/10.7303/syn9702085). To assesswhether GeneEMBED candidates were enriched for DE genes, we performed one-tailed hyper-

geometric tests per brain region. Thesehypergeometric testswere limited only to the set of geneswhichwerepresent in both theRNA-

sequencing data fromAMP-AD cohort and theWES data from the ADSPDiscovery and Extension cohorts (i.e. only genes sequenced

in both data sets were used). We performed these tests over all seven brain regions to identify region specific enrichments. Next, to

determine statistical significance of having enrichment in n out of seven brain regions, we adopted a permutation testing strategy. We

repeated the above analysis 1000xwith randomly selected gene sets of similar size as candidate gene set. One-tailed Z-test p-values
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were calculated for the observed number of enriched regions in candidate gene set relative to the distribution observed from

random gene sets. This analysis was repeated for all GeneEMBED candidate gene sets, GWAS Meta 1 gene set, and GWAS

Meta 2, gene set.

Pathway enrichment analysis
Protein-protein interaction network of high confidence GeneEMBED candidates was built with the Homo sapiens STRING v11147 us-

ing the combined score of all evidence types at a threshold of 0.400.HiDef-Louvain algorithm tool in the Community Detection exten-

sion algorithm of Cytoscape was used for clustering followed by functional enrichment analysis of each of the 21main clusters. Gene

set enrichment analysis was performed using the iQuery, EnrichR and Gprofiler community detection interfaces. Enrichments were

considered significant if gene set FDR <0.05. Network was represented using Cytoscape v3.8.2 152.

Mouse phenotype analysis
To assess the relationship between high-confidence GeneEMBED genes and mouse phenotypes, we downloaded the files

VOC_Mammalian_Phenotype.rpt and HMD_HumanPhenotype.rpt from the Mouse Genome Informatics (MGI) database (down-

loaded Nov. 2021). Within the downloadable database, we queried our full set of 143 genes and found that only 139 were docu-

mented in the database. These 139 genes mapped to 182 mouse homologs/orthologs. We then tallied the number of mouse

genes in our candidate set which had annotations for the high-level mammalian phenotype of ‘Nervous system phenotype’.

We then tallied the total number of mouse genes in the downloadable database which had the same high level mammalian

phenotype annotation. We then performed a one-tailed Fisher’s Exact Test to determine the statistical significance of our ob-

servations. Additionally, we repeated this analysis for high level mammalian phenotype categories of (i) ‘Behavioral/Neurological

phenotype’ and (ii) ‘Nervous system phenotype’ AND ‘Behavioral/Neurological phenotype’.

Drug interaction analysis
To assess whether any of our high confidence candidate genes were potential therapeutic targets, we used the Drug-Gene Interac-

tion database (DGIdb).148 The set of high-confidence candidate genes were input into the ‘Search Drug-Gene interactions’ webtool

on the DGIdb website. We applied preset filters of ‘Approved’ indicating FDA-approved drugs only. We then filtered the subsequent

list of drug-gene interactions for those which were annotated as having a directional (inhibiting or activating) effect. The resulting

genes were then queried through PubMed database for co-mentions with ‘Alzheimer’ in abstracts.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the quantitative and statistical methods, strategies, and analyses are described in the relevant sections of the method details or

in the table and figure legends.
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